Ok

En poursuivant votre navigation sur ce site, vous acceptez l'utilisation de cookies. Ces derniers assurent le bon fonctionnement de nos services. En savoir plus.

Culture Générale - Page 26

  • Les retables

    Je vous fais partager ici quelques photos et liens concernant deux magnifiques retables que j'ai rencontrés lors de mes vacances, le premier se trouve à Rothenburg en Allemagne, très belle ville entourée de remparts et le deuxième est celui d'Issenheim que je connaissais déjà conservé au Musée Unterlinden de Colmar.

     

    1) Définition et généralités

    Le retable (du latin retro tabula altaris : en arrière d'autel) est une construction verticale qui porte des décors sculptés ou peints en arrière de la table d'autel. L'étymologie du mot français est la même que l'espagnol retablo, lorsque le terme italien est pala d'altare.

    Il est fréquent qu'un retable se compose de plusieurs volets, deux pour un diptyque, trois pour un triptyque voire davantage pour un polyptyque.

    La suite sur Wikipédia

     

    2) Le retable du Saint Sang de Rothenburg

    L'autel du Saint Sang est l'oeuvre de Timan Riemenshneider réalisée de 1499 à 1505, à la demande des échevins de Rothenburg qui souhaitent donner à la relique du Saint Sang, si vénérée au Moyen- Age, un cadre digne d'elle. On y remarquera les figures très expressives de la Cène, scultée. Saint Jean appuie la tête sur la poitrine de son Seigneur alors que Judas, qui va le trahir, le désigne. Sur les volets latéraux, à gauche on trouve l'entrée de Jésus à Jérusalem et à droite l'agonie au jardin de Gethsénami.

     

    09-Roth%20Retable-ul%20celebru%20al%20Sf.%20Sange%20%28o%20picatura!%29...%2014[1].JPG

    Photo : Dumitru

     

    Mes photos ( cliquer dessus pour les agrandir) :

     

    P1010274.JPG



    retable2.JPG


    retable 1.JPG

     

    Photos de Rothenburg

     

     

    3) Le retable d'Issenheim

    Consacré à Saint Antoine, guérisseur du mal des ardents, provoqué par l'ergot de seigle, ce polyptyque représente la Crucifixion, lorsque est fermé et d'autres scénes dont la Résurection, la tentation de Saint Antoine, le concert des anges lorsqu'il ouvre ses panneaux à certaines occasions. Cette oeuvre d'art totale dépasse le gothique tardif qui l'a vu naître des mains que la tradition désigne de Mathias Grünewald (1512-1516). Lorsqu'il est totalement ouvert, l'oeuvre scultée de Nicolas Haguenau ( vers 1515) apparaît.

     

    Le retable fermé ( vidéo en italien)

     

     

    IMG_0039<span id=

    Photo : Claude Le Berre


    Autres photos du retable ( Flickr)

    Une image de la religion chrétienne avant la Réforme ( document de l'académie de Versailles)

     

     

    4) Un retable "personnel"

    J'ai été interpellé par cette version " portable " d'un retable qui malgré sa petite taille n'en est pas moins expressive. Elle se trouve aussi au musée Unterlinden de Colmar

     

    Cliquer sur l'image pour l'agrandir

    retable 4.JPG

     

     

    5) Compléments sur la création de billets de blogs

    Cette note a été créée, non seulement pour faire partager la beauté de ces retables mais aussi pour être le support d'une présentation sur le thème " Web 2.0 et enseignement"


    Lire la suite

  • Google et les maths

    "Google" est le moteur de recherche le plus utilisé. C'est donc un média privilégié pour faire un peu mieux connaître notre discipline. De temps en temps, le logo Google est modifié pour telle ou telle occasion. Un bloggueur bien courageux a répertorié plus de 300 logos "Google" depuis la création du site en 1998. Voilà ceux qui ont un rapport plus ou moins proche avec les maths, je vous laisse retrouver ce qui est associé ou celui qui se cache derrière chaque logo à titre d'exercice.

    En 2003 :

    105-google-logo-3-14-2003.gif
    110-google-logo-6-16-2003.gif
    En 2004 :

    125-google-logo-2-3-2004.gif

    En 2005:


    167-google-logo-4-15-2005.gif

     

    169-google-logo-5-3-2005.gif
    En 2006 :

    184-google-logo-1-4-2006.gif


    En 2009 :

    260-google-logo-4-20-2009.gif
    268-google-logo-4-27-2009.gif

  • Le retour de la démonstration

    Il était une fois...

    Au XVIIIème siècle, un homme fut le maître de la mise en scène de la "démonstration", il s'appelait l'Abbé Nollet, il rendit la physique visuelle en construisant des instruments permettant sa "démonstration", en fournissant des livres d'expérience et en publiant des cours très clairement rédigés. Le commerce des instruments et des expériences de Nollet se généralisa dans toute l'Europe et les labos de physique-chimie de nos lycées témoignent encore de cette tradition scolaire de la physique expérimentale, bien marquée malgré sa mathématisation qui n'a cessé de croître.

     

     

    Au XXIème siècle...

    Il est encore un peu tôt pour le dire, mais je pense que le XXIème siècle aura son Nollet à lui. Certes il ne s'agit plus de physique mais de mathématiques, d'instruments mais d'ordinateurs, la diffusion ne se fait plus au travers des livres mais  les moteurs de recherches, le buzz, les codes préétablis.

    Lire la suite

  • La vulgarisation, un art haut en couleurs

    Arche_arc_en_ciel.jpgSi vous êtes un habitué de ce blog depuis sa création, vous n'avez pas pu manquer le fait que certains sujets me tiennent plus à coeur que d'autres: Gödel, la philosophie, l'art, les actualités mathématiques, l'épistémologie, l'enseignement des mathématiques, les outils web, et aussi la Vulgarisation avec un grand V que j'élève au rang d'art majeur.

    Les lieux communs sans cesse revisités et les images préformées nous laissent souvent penser que la vulgarisation tient plus du rabotage grossier que de l'art. Ce serait la discipline dans laquelle les aspérités qui feraient mal au plus grand nombre seraient éliminées pour laisser place à un objet brut, lisse, édulcoré, au contenu aseptisé en vue de son assimilation par la masse sans indigestion. Personnellement, ce n'est pas du tout comme cela que je vois les choses. Pour moi vulgariser c'est comme opérer la décomposition de la lumière blanche avec un prisme. A l'une des extrémités du spectre on trouve les ultra-violets, qui correspondraient à l'hyperspécialisation, tellement fermée que les connaissances ne peuvent se transmettre qu'entre pairs. Ni en haut, ni en bas, le discours du spécialiste est un parmi les autres sur un sujet donné. Il possède ses exigences, répond à un besoin, comme toutes les composantes colorées de la lumière décomposée. A l'autre extrémité du spectre se trouvent les infra-rouges. On pourrait les associer  au socle d'une pyramide au dessus de laquelle toutes les strates de la vulgarisation et des connaissances les plus spécifiques peuvent s'empiler. Établir cette base, retrouver les infra-rouges lorsque l'on est un spécialiste pointu des ultra-violets demande les plus hautes compétences. La vision  acérée doit s'ouvrir de la façon la plus vaste pour voir les moindres détails, y compris les cailloux du chemin sur lequel on marche. Il faut enlever ses lunettes de travail pour voir les couleurs réelles et les décrire.

    De mon point de vue, peu de personnes possèdent ces capacités de vulgarisation, de simplifier sans dénaturer, de pouvoir approfondir à toute occasion de façon graduée, de pouvoir surfer et plonger à loisir dans le vaste océan des connaissances, et tout particulièrement celui des mathématiques qui ne se prète guère à l'exercice et demande d'autant plus de dextérité.

    Lire la suite

  • Translatez et linkez en paix mes frères et mes soeurs...

    30bb16d19445d895a6c3f7b43c7d9702.pngAlors que je consultais paisiblement mon Google Reader, je fus interpelé par un article intitulé "Fast inverse square root", partagé par un internaute du Monde. Je connaissais bien la traduction en français de tous les mots du titre: "Racine carrée inverse rapide". Chacun d'entre eux faisait sens mais lorsqu'ils étaient placés ensemble, je me retrouvais dans l'incapacité de prédire un contenu possible de l'article en question. J'imaginais bien sûr qu'il devait s'agir d'une méthode, exotique ,ça je ne le savais pas, mais certainement numérique pour calculer l'inverse d'une racine carrée de façon rapide.

    Ma curiosité ne fit qu'un seul tour de mon attracteur étrange psychique, ce qui me poussa de façon compulsive à cliquer sur le lien en question. Et que vis-je en premier? L'image suivante...

     

    OpenArena-Rocket.jpg

    Waouh, ça parle de maths et de jeux vidéos dans l'article !

    Lighting and reflection calculations (shown here in the free and open source first-person shooter, OpenArena) use the fast inverse square root code to compute angles of incidence and reflection.

    Je ne suis pas encore trop dépassé par le texte précédent et j'arrive à comprendre en gros que l'article traite d'une méthode utilisée dans les codes de jeux vidéos, le premier étant certainement OpenArena, et qui permettrait de calculer plus rapidement les angles d'incidence des rayons lumineux sur les surfaces éclairées, et pour cela il faut estimer de façon assez précise et quasi-instantannée l'inverse de la racine carrée de nombreux nombres afin d'offrir un rendu réaliste.

    En parcourant en diagonale le texte, je lis quelques bribes en passant :

    The magic number 0x5f3759df

    En plus il y a quelque chose de magique dans ce texte. Il faut que je le lise... mais c'est en anglais, alors je le bookmarque sur Diigo dans la catégorie "non lu" qui augmente à vue d'oeil et je procrastine, remettant la fastidieuse traduction au lendemain avant de me lancer dans l'écriture d'un billet dont le sujet s'avérait prometteur.

    Lire la suite