Ok

En poursuivant votre navigation sur ce site, vous acceptez l'utilisation de cookies. Ces derniers assurent le bon fonctionnement de nos services. En savoir plus.

Culture Générale - Page 26

  • Le retour de la démonstration

    Il était une fois...

    Au XVIIIème siècle, un homme fut le maître de la mise en scène de la "démonstration", il s'appelait l'Abbé Nollet, il rendit la physique visuelle en construisant des instruments permettant sa "démonstration", en fournissant des livres d'expérience et en publiant des cours très clairement rédigés. Le commerce des instruments et des expériences de Nollet se généralisa dans toute l'Europe et les labos de physique-chimie de nos lycées témoignent encore de cette tradition scolaire de la physique expérimentale, bien marquée malgré sa mathématisation qui n'a cessé de croître.

     

     

    Au XXIème siècle...

    Il est encore un peu tôt pour le dire, mais je pense que le XXIème siècle aura son Nollet à lui. Certes il ne s'agit plus de physique mais de mathématiques, d'instruments mais d'ordinateurs, la diffusion ne se fait plus au travers des livres mais  les moteurs de recherches, le buzz, les codes préétablis.

    Lire la suite

  • La vulgarisation, un art haut en couleurs

    Arche_arc_en_ciel.jpgSi vous êtes un habitué de ce blog depuis sa création, vous n'avez pas pu manquer le fait que certains sujets me tiennent plus à coeur que d'autres: Gödel, la philosophie, l'art, les actualités mathématiques, l'épistémologie, l'enseignement des mathématiques, les outils web, et aussi la Vulgarisation avec un grand V que j'élève au rang d'art majeur.

    Les lieux communs sans cesse revisités et les images préformées nous laissent souvent penser que la vulgarisation tient plus du rabotage grossier que de l'art. Ce serait la discipline dans laquelle les aspérités qui feraient mal au plus grand nombre seraient éliminées pour laisser place à un objet brut, lisse, édulcoré, au contenu aseptisé en vue de son assimilation par la masse sans indigestion. Personnellement, ce n'est pas du tout comme cela que je vois les choses. Pour moi vulgariser c'est comme opérer la décomposition de la lumière blanche avec un prisme. A l'une des extrémités du spectre on trouve les ultra-violets, qui correspondraient à l'hyperspécialisation, tellement fermée que les connaissances ne peuvent se transmettre qu'entre pairs. Ni en haut, ni en bas, le discours du spécialiste est un parmi les autres sur un sujet donné. Il possède ses exigences, répond à un besoin, comme toutes les composantes colorées de la lumière décomposée. A l'autre extrémité du spectre se trouvent les infra-rouges. On pourrait les associer  au socle d'une pyramide au dessus de laquelle toutes les strates de la vulgarisation et des connaissances les plus spécifiques peuvent s'empiler. Établir cette base, retrouver les infra-rouges lorsque l'on est un spécialiste pointu des ultra-violets demande les plus hautes compétences. La vision  acérée doit s'ouvrir de la façon la plus vaste pour voir les moindres détails, y compris les cailloux du chemin sur lequel on marche. Il faut enlever ses lunettes de travail pour voir les couleurs réelles et les décrire.

    De mon point de vue, peu de personnes possèdent ces capacités de vulgarisation, de simplifier sans dénaturer, de pouvoir approfondir à toute occasion de façon graduée, de pouvoir surfer et plonger à loisir dans le vaste océan des connaissances, et tout particulièrement celui des mathématiques qui ne se prète guère à l'exercice et demande d'autant plus de dextérité.

    Lire la suite

  • Translatez et linkez en paix mes frères et mes soeurs...

    30bb16d19445d895a6c3f7b43c7d9702.pngAlors que je consultais paisiblement mon Google Reader, je fus interpelé par un article intitulé "Fast inverse square root", partagé par un internaute du Monde. Je connaissais bien la traduction en français de tous les mots du titre: "Racine carrée inverse rapide". Chacun d'entre eux faisait sens mais lorsqu'ils étaient placés ensemble, je me retrouvais dans l'incapacité de prédire un contenu possible de l'article en question. J'imaginais bien sûr qu'il devait s'agir d'une méthode, exotique ,ça je ne le savais pas, mais certainement numérique pour calculer l'inverse d'une racine carrée de façon rapide.

    Ma curiosité ne fit qu'un seul tour de mon attracteur étrange psychique, ce qui me poussa de façon compulsive à cliquer sur le lien en question. Et que vis-je en premier? L'image suivante...

     

    OpenArena-Rocket.jpg

    Waouh, ça parle de maths et de jeux vidéos dans l'article !

    Lighting and reflection calculations (shown here in the free and open source first-person shooter, OpenArena) use the fast inverse square root code to compute angles of incidence and reflection.

    Je ne suis pas encore trop dépassé par le texte précédent et j'arrive à comprendre en gros que l'article traite d'une méthode utilisée dans les codes de jeux vidéos, le premier étant certainement OpenArena, et qui permettrait de calculer plus rapidement les angles d'incidence des rayons lumineux sur les surfaces éclairées, et pour cela il faut estimer de façon assez précise et quasi-instantannée l'inverse de la racine carrée de nombreux nombres afin d'offrir un rendu réaliste.

    En parcourant en diagonale le texte, je lis quelques bribes en passant :

    The magic number 0x5f3759df

    En plus il y a quelque chose de magique dans ce texte. Il faut que je le lise... mais c'est en anglais, alors je le bookmarque sur Diigo dans la catégorie "non lu" qui augmente à vue d'oeil et je procrastine, remettant la fastidieuse traduction au lendemain avant de me lancer dans l'écriture d'un billet dont le sujet s'avérait prometteur.

    Lire la suite

  • Une correction de bac révolutionnaire avec Diigo

    Alexandre Moatti a  planché sur l'épreuve de bac de Terminale S. L'article a été publié sur Libération.fr.
    Avant de vous faire partager mes commentaires apposés sur ce texte, je vous laisse regarder cette petite vidéo pour vous familiariser avec les fonctionnalités de Diigo qui permet de surligner et d'annoter du contenu en ligne puis de le partager :

    goview.jpg

     

    Pour un affichage optimal du billet suivant avec des hyperliens actifs sur les notes, je vous conseille d'installer le plugin Diigo sur Firefox ( mais ce n'est pas obligatoire ).

     

    bac.jpg

     

    Bonne lecture.

    Lire la suite

  • Nom d'un théorème !

    Souvent le découvreur ou le diffuseur d'un théorème est éponyme. Qui ne connaît pas le théorème de Thalès ou de Pythagore? Mais certains théorèmes possèdent des noms assez surprenants. J'en ai trouvé quelques uns, mais pas énormément comme je l'aurai pensé initialement. Une explication en langue usuelle est donnée dans chacun des cas. Les mathématiques sous-jacentes à l'énoncé de ces théorèmes ne sont pas toutes simples, et je ne doute pas que le spécialiste se documentera sur la question. Si vous en connaissez d'autres, ils seront les bienvenus...

     

    Patrouille_cycliste_de_gendarmes.jpgLe théorème des gendarmes

    Il est très connu des élèves de lycée.  Lorsque l'on est entre deux gendarmes et qu'ils se dirigent vers le même endroit, on n'a pas d'autre choix que d'y aller aussi.



    Photo: www.ahgv.ch

     

    Toits_notre_dame_paris.jpgLe théorème du toit

    Il est aussi très connu des élèves de lycée. Deux plans sécants de l'espace représentent le toit en question et l'intersection le faitage. Deux droites parallèles incluses respectivement danschacun des deux plans, comme par exemple des goutières, sont parallèles au faitage ( à la droite d'intersection des deux  plans ).

    Photo: Édouard BERGÉ

     

    Chinois.jpgLe théorème des restes chinois

    D'un niveau bien plus élevé que les précédents, il est ainsi nommé car il permet de répondre à la question suivante : Combien l'armée de Han Xing comporte-t-elle de soldats si, rangés par 3 colonnes, il reste deux soldats, rangés par 5 colonnes, il reste trois soldats et, rangés par 7 colonnes, il reste deux soldats ?

    Photo : Laurent van Roy

    Lire la suite