Ok

En poursuivant votre navigation sur ce site, vous acceptez l'utilisation de cookies. Ces derniers assurent le bon fonctionnement de nos services. En savoir plus.

Simulations, modélisations

  • Des graphes pour mieux comprendre la conscience

    Ma thèse en 180 secondes de Gaspard Fougea - Université Paris- Saclay :

    Modèles formels pour la conscience : de l’expérience subjective aux algorithmes cognitifs

     


  • Vivons-nous dans une simulation ? Une potentielle nouvelle loi de la physique soutient cette idée

    S’immisçant dans les complexités de la physique et de la philosophie, la seconde loi de l’infodynamique, récemment proposée, propose une nouvelle perception de l’univers en liant information et dynamique systémique. Cette loi, avec son potentiel à étayer la « théorie de l’Univers en tant que simulation informatique », soulève des implications tant sur le plan scientifique que philosophique, ouvrant ainsi un dialogue entre la réalité perçue et les caractéristiques potentiellement simulées de notre univers.

    La suite de l’article sur Trust My Science

  • La plus belle femme de l’année 2022 est…

    nombre d’or,femme,beauté,phi

  • L’ingénierie génétique qui suit les lois de l’électricité

    Le Laboratoire des Systèmes Complexes de l’Université Pompeu Fabra (Barcelone) a développé et validé expérimentalement un modèle mathématique prédisant la charge supplémentaire de travail provoquée par l’expression génétique d’un gène lors de son introduction au sein d’un organisme. De façon surprenante, la formule mathématique obtenue est équivalente à la loi d’Ohm, qui détermine la tension d’un circuit électrique.

    Peut-on prédire le comportement d’un organisme vivant par l’état de ses gènes et de ses protéines de la même manière qui nous prédisons celui d’une machine par ses composants ? Cette interrogation est considérée comme fondamentale pour de nombreux experts de la biologie synthétique, discipline consistant à utiliser les techniques d’ingénierie pour concevoir de nouveaux organismes génétiquement modifiés. Les scientifiques du Laboratoire des Systèmes Complexes du Département des Sciences Expérimentales et de la Santé de Barcelone (DCEXS) ont développé un modèle mathématique prédisant l’expression génétique d’un organisme, se rapprochant de manière surprenante des lois régissant les circuits électriques, et loin de suivre une logique qui s’appuierait sur les particularités de la biologie.

     

    ohm_cle8114a1.jpg

    L’équipe du Laboratoire des Systèmes Complexes du Département des Sciences Expérimentales et de la Santé de Barcelone (DCEXS) / Université Pompeu Fabra

    L’ingénierie génétique, une réalité

    La biologie synthétique vise à améliorer les fonctions des organismes en leur attribuant des capacités à l’origine inexistantes. Elle est utilisée notamment dans le cadre de projets comme la lutte contre le paludisme ou la génération de nouvelles sources d’énergie d’origine biologique. Ces changements dans l’organisme sont rendus possibles grâce à l’ingénierie génétique, qui permet l’ajout de gènes provenant d’autres espèces au sein d’un organisme. La biologie synthétique, elle, cherche à introduire non seulement de nouveaux gènes mais également les instructions nécessaires qui déterminent si le corps doit ou ne doit pas remplir une fonction en particulier.
    Cependant, l’introduction d’un gène dans l’ADN d’une cellule génère un stress cellulaire, provoquant une charge supplémentaire pour l’expression génétique de la cellule et affectant son métabolisme. Cette charge rend impossible la prédiction du comportement d’un circuit génétique entier via une simple caractérisation individuelle des gènes le composant, et représente une des principales limitations de la biologie synthétique.
    L’expression génétique d’une cellule dépend des ressources dont elle dispose, de sorte que si la demande d’expression génétique augmente (ce qui est le cas lors de l’ajout d’un nouveau gène) et les ressources cellulaires restent constantes, le résultat final de l’expression sera altéré. De la même manière que la lumière d’une ampoule peut varier lors de la connexion d’un appareil électrique d’une certaine puissance (un radiateur par exemple), l’ajout d’un gène peut affecter l’expression d’un autre au sein d’un organisme vivant.

    Lire la suite