Ok

En poursuivant votre navigation sur ce site, vous acceptez l'utilisation de cookies. Ces derniers assurent le bon fonctionnement de nos services. En savoir plus.

couleurs

  • La vulgarisation, un art haut en couleurs

    Arche_arc_en_ciel.jpgSi vous êtes un habitué de ce blog depuis sa création, vous n'avez pas pu manquer le fait que certains sujets me tiennent plus à coeur que d'autres: Gödel, la philosophie, l'art, les actualités mathématiques, l'épistémologie, l'enseignement des mathématiques, les outils web, et aussi la Vulgarisation avec un grand V que j'élève au rang d'art majeur.

    Les lieux communs sans cesse revisités et les images préformées nous laissent souvent penser que la vulgarisation tient plus du rabotage grossier que de l'art. Ce serait la discipline dans laquelle les aspérités qui feraient mal au plus grand nombre seraient éliminées pour laisser place à un objet brut, lisse, édulcoré, au contenu aseptisé en vue de son assimilation par la masse sans indigestion. Personnellement, ce n'est pas du tout comme cela que je vois les choses. Pour moi vulgariser c'est comme opérer la décomposition de la lumière blanche avec un prisme. A l'une des extrémités du spectre on trouve les ultra-violets, qui correspondraient à l'hyperspécialisation, tellement fermée que les connaissances ne peuvent se transmettre qu'entre pairs. Ni en haut, ni en bas, le discours du spécialiste est un parmi les autres sur un sujet donné. Il possède ses exigences, répond à un besoin, comme toutes les composantes colorées de la lumière décomposée. A l'autre extrémité du spectre se trouvent les infra-rouges. On pourrait les associer  au socle d'une pyramide au dessus de laquelle toutes les strates de la vulgarisation et des connaissances les plus spécifiques peuvent s'empiler. Établir cette base, retrouver les infra-rouges lorsque l'on est un spécialiste pointu des ultra-violets demande les plus hautes compétences. La vision  acérée doit s'ouvrir de la façon la plus vaste pour voir les moindres détails, y compris les cailloux du chemin sur lequel on marche. Il faut enlever ses lunettes de travail pour voir les couleurs réelles et les décrire.

    De mon point de vue, peu de personnes possèdent ces capacités de vulgarisation, de simplifier sans dénaturer, de pouvoir approfondir à toute occasion de façon graduée, de pouvoir surfer et plonger à loisir dans le vaste océan des connaissances, et tout particulièrement celui des mathématiques qui ne se prète guère à l'exercice et demande d'autant plus de dextérité.

    Lire la suite

  • Des p'tits problèmes de coloriage ?

    a003-099.gifLes mathématiciens aiment colorier. Peut-être n'ont-ils pas eu le temps de le faire à l'école, alors ils rattrapent le temps perdu.

    Dès 1852, l'un d'entre eux se demanda combien il fallait de couleurs pour colorier tous les pays de n'importe quelle carte sans que deux pays voisins n'aient la même couleur. Le problème est capital car dans le cas contraire on ne pourrait plus distinguer ces deux pays après coloriage. Il pensa que quatre devait être suffisant. Beaucoup de mathématiciens prirent aussi leurs crayons de couleurs et se mirent d'accord sur le nombre : 4 doit convenir mais ils ne s'accordèrent qu'à moitié sur la preuve car celle-ci faisait intervenir un bien étrange "personnage": un ordinateur. Bref après quelques guéguerres internes sur le style, l'incontournable boite aux quatre crayons nécessaire pour colorier toutes les cartes planes imaginables de l'univers s'appelle désormais "Théorème des quatre couleurs".

     

    Je t'ai apporte des crayons

     

    Malgré  la difficulté de la preuve et des conversations qui lui étaient associée, les mathématiciens s'ennuyaient un peu. C'est ainsi qu'en 1950, un certain Edward Nelson, agé de seulement 18 ans, lança un autre coloriage encore en vogue pour les occuper.

    D'un air sans doute amusé, il soumit à la communauté, le petit problème suivant :

    Combien faut-il de couleurs différentes pour colorier chaque point du plan, de façon que deux points distants d'une unité n'aient pas la même couleur?

    Si les mathématiciens étaient troublés, ce n'était pas parce qu'ils se demandaient avec quel type de crayon ils allaient réaliser cet étrange travail mais plutôt pourquoi est-ce qu'ils avaient seulement réussi à démontrer qu'il fallait au moins 4 couleurs et au plus 7 pour réaliser cette activité presque manuelle? Ils ne parvenaient pas à donner le nombre exact de couleurs minimal dont ils avaient besoin pour colorier les points du plan avec cette contrainte: 4,5,6 ou 7?

     

    My son's color pencils

     

    Alors d'où vient la difficulté? Certainement de la théorie des ensembles à laquelle on peut adjoindre différentes versions de l'axiome du choix ou au contraire  l'en priver.

    L'axiome du choix dit qu'il est possible de prélever des éléments d'ensembles différents et de construire un autre ensemble. Si l'idée parait simpliste lorsque les ensembles sont finis, elle ne l'est pas lorsqu'ils deviennent infinis.

    m4-18.jpgBertrand Russel, nous donne une vague idée de ce que peut-être l'axiome du choix au quotidien :

    Pour choisir une chaussette plutôt que l'autre pour chaque paire d'une collection infinie, on a besoin de l'axiome du choix. Mais pour les chaussures, ce n'est pas la peine.

    Explication :

    • Quand on dispose d'une paire de chaussettes quelconque, on n'a aucun moyen a priori de distinguer une chaussette de l'autre, ce sont des objets a priori identiques et même si chaque matin on arrive à choisir laquelle on va mettre en premier, on serait bien en peine de trouver un procédé général qui nous permette de renouveler l'exploit éternellement.
    • Pour les chaussures, il existe un moyen de choisir qui marche tout le temps (une fonction de choix naturelle) : choisir toujours la chaussure gauche (ou droite) puisqu'il y a toujours une chaussure gauche et une chaussure droite.

     

    Cet axiome du choix est vraiment un élement trouble-fête. Il avait déjà permis à un étrange mathématicien peu scrupuleux de s'enrichir.

    Il s'est aussi mis sur le chemin de deux mathématiciens Soifer et Shelah qui parvinrent à démontrer qu'en utilisant deux versions différentes de cet axiome, il fallait pour résoudre le même problème de coloriage, soit 2 couleurs, soit une infinité! C'est le grand écart.

    Tout cela pour vous dire que les mathématiciens ont vraiment des "gros problèmes de coloriage"!

     

    Inspiré de - Coloriages irréels - Complexités de Jean-Paul Delahaye aux éditions Pour la Science

     

    Pour compléter sur l'axiome du choix :

    Du choix dans la dissection -  sur le blog Choux romanesco et intégrale curviligne