La vulgarisation, un art haut en couleurs
Si vous êtes un habitué de ce blog depuis sa création, vous n'avez pas pu manquer le fait que certains sujets me tiennent plus à coeur que d'autres: Gödel, la philosophie, l'art, les actualités mathématiques, l'épistémologie, l'enseignement des mathématiques, les outils web, et aussi la Vulgarisation avec un grand V que j'élève au rang d'art majeur.
Les lieux communs sans cesse revisités et les images préformées nous laissent souvent penser que la vulgarisation tient plus du rabotage grossier que de l'art. Ce serait la discipline dans laquelle les aspérités qui feraient mal au plus grand nombre seraient éliminées pour laisser place à un objet brut, lisse, édulcoré, au contenu aseptisé en vue de son assimilation par la masse sans indigestion. Personnellement, ce n'est pas du tout comme cela que je vois les choses. Pour moi vulgariser c'est comme opérer la décomposition de la lumière blanche avec un prisme. A l'une des extrémités du spectre on trouve les ultra-violets, qui correspondraient à l'hyperspécialisation, tellement fermée que les connaissances ne peuvent se transmettre qu'entre pairs. Ni en haut, ni en bas, le discours du spécialiste est un parmi les autres sur un sujet donné. Il possède ses exigences, répond à un besoin, comme toutes les composantes colorées de la lumière décomposée. A l'autre extrémité du spectre se trouvent les infra-rouges. On pourrait les associer au socle d'une pyramide au dessus de laquelle toutes les strates de la vulgarisation et des connaissances les plus spécifiques peuvent s'empiler. Établir cette base, retrouver les infra-rouges lorsque l'on est un spécialiste pointu des ultra-violets demande les plus hautes compétences. La vision acérée doit s'ouvrir de la façon la plus vaste pour voir les moindres détails, y compris les cailloux du chemin sur lequel on marche. Il faut enlever ses lunettes de travail pour voir les couleurs réelles et les décrire.
De mon point de vue, peu de personnes possèdent ces capacités de vulgarisation, de simplifier sans dénaturer, de pouvoir approfondir à toute occasion de façon graduée, de pouvoir surfer et plonger à loisir dans le vaste océan des connaissances, et tout particulièrement celui des mathématiques qui ne se prète guère à l'exercice et demande d'autant plus de dextérité.