Ok

En poursuivant votre navigation sur ce site, vous acceptez l'utilisation de cookies. Ces derniers assurent le bon fonctionnement de nos services. En savoir plus.

vulgarisation

  • Qui est le meilleur joueur de tennis de tous les temps?

    Voilà une bonne question et si on la pose à M. Google voilà ce qu'il nous répond ou plutôt ce que les principaux utilisateurs de forums nous répondent.

    Bon allez, en fonction de la tête du joueur, de l'âge de celui qui répond et ses connaissances tennistiques on voit apparaître les noms de Nadal, de Federer, de Börg, de Mac Enroe, Wilander, Edberg  et cela seulement en consultant le premier lien précédent.

    J'ai toujours révé de me faire interroger sur la question par un vrai journaliste sportif. Ah, tiens je le vois arriver.

    Le journaliste sportif
    - Bonjour, vous êtes Webmaster des Inclassables Mathématiques et passionné de tennis.

    Moi
    - C'est ça oui.

    Moi (dans ma tête)
    - J'adore qu'on m'appelle Webmaster avec un W majuscule.

    Le journaliste sportif
    - Alors pour vous quel est le meilleur joueur de tennis de tous les temps?

    Moi
    - Personnellement, je dirai Jimmy Connors à cause de ça:

     

     

    Le journaliste sportif
    - Je vois qu'en fait vous êtes très attaché à Connors car c'est un excellent showman mais objectivement, rationnellement, rien ne vous permet de dire que Jimmy Connors est le meilleur joueur de tous les temps.

    Moi (dans ma tête)
    - Le journaliste ne doit sans doute pas savoir que je suis prof de maths et que je peux apporter des arguments mathématiques et rationnels.

    Moi
    - Il faudrait en fait que je vous explique comment faire une analyse du réseau complexe de l'histoire du tennis professionnel depuis 1968 mais je ne sais pas si vous vous sentez d'attaque (de coup droit bien sûr).

    Rires (en plus je fais rire le journaliste sportif, je suis aux anges...)

    Moi
    -Alors allons-y.

    Nous allons tout d'abord définir les conditions de l'analyse. Nous prendrons en compte les résultats de tous les matchs joués par les joueurs de tennis professionnels entre 1968 et 2010.  Tous les matchs du Grand Chelem et ceux intervenant dans le classement ATP seront pris en compte, soit au total 3700 joueurs, 3640 tournois et 133 261 matches.

    Si le nombre de tournois est assez régulier avec cependant des pics en 1980 et 1992 avec plus de 90 tournois par an, le nombre de joueurs ne cesse de décroître linéairement depuis 1996 et est passé de 400 environ à 300, comme l'indique le graphique suivant:

     

    sports,graphe,tennis,analyse,réseau

    Le graphique suivant indique la proportion de de joueurs ayant remporté ou perdu un nombre donné de matches. On voit que beaucoup de joueurs gagnent ou perdent peu de matches (en fait ils quittent les tournois rapidement. A l'autre bout, un petit groupe de joueurs (les meilleurs)  jouent beaucoup de matches qu'ils gagnent généralement contre les plus faibles et aussi entre eux qu'ils gagnent ou qu'ils perdent, connu sous le nom d'effet Matthew (les pauvres deviennent plus pauvres et les riches plus riches).

     

    sports,graphe,tennis,analyse,réseau

     

    Nous allons ensuite construire le graphe des rencontres. Il sera orienté (une flèche sera "tracée" à chaque victoire du joueur j vers le joueur i) et pondérée par le nombre de défaites du joueur j contre le joueur i.  

    Le graphique suivant est un sous-graphe extrait de celui de tous les joueurs concernant ceux qui ont été premier au classement ATP. L'intensité et la largeur d'une flêche sont proportionnelles au logarithme de son importance (poids).

     

    sports,graphe,tennis,analyse,réseau

    La représentation de ce résau peut être utilisée pour classer les joueurs en calculant pour chacun leur taux de "Prestige" dont la somme serait égale à 1. Celà n'est pas sans rappeler la méthode de calcul du PageRank pour classer les pages Web.

    Le prestige d'un joueur i représente la fraction de prestige totale de l'état d'équilibre du graphe dans un processus de diffusion. Pour expliquer en termes un peu plus simples, chaque nouveau résultat d'un matche modifie le "prestige" des deux compétiteurs puis par diffusion celui de tous les joueurs. Les mathématiques nous indiques que ce calcul converge vers un équilibre permettant de calculer le nouveau "Prestige" de tous les joueurs du graphes. Par exemple un joueur k qui  a gagné contre le joueur i qui vient lui même de remporter un matche contre un adversaire fort voit son prestige augmenter.

    Comme dans le cas du PageRank, il est nécessaire de fixer la valeur d'un paramètre (c pour le PageRank, q ici). La valeur a été choisie dans les deux cas.

    Le graphique suivant indique le prestige en fonction du nombre de victoires (jusqu'à 7) pour différentes valeurs du paramètre q. Le choix de 0.15 est "traditionnel" et équilibré.

    sports,graphe,tennis,analyse,réseau

    Plus le nombre de matchs gagné est grand plus le prestige est grand. Cependant, le nombre de match gagnés augmentant, le niveau de prestige doit être recalculé en implémentant une condition dite de normalisation, imposant qu'une quantité donnée soit constante. Elle permettra ainsi de définir un Prestige de référence a partir duquel tous les autres pourront être caculés. Cette condition impose que la somme des produits du nombre de victoires par le prestige pour chaque joueur soit égal à 1.

    Et le résultat est bien celui que je vous avais donné. Jimmy Connors est bien le meilleur joueur de tous les temps:

     

    sports,graphe,tennis,analyse,réseau,vulgarisation

     

    Le journaliste sportif
    - C'est certainement aussi celui qui a gagné le plus grand nombre de matches, c'est à dire dont la carrière a été la plus longue. Et les joueurs dont la carrière est terminée sont favorisés par rapport aux autres qui sont en cours de carrière. Alors pour ce qui est de la rationnalité de votre méthode de calcul permettez moi d'en douter.


    Moi (un peu embarassé par les arguments du journaliste)
    - Burp, c'est à dire que en fait... Vous voyez, il ne faut pas confondre le nombre de victoires et le prestige. Rafael Nadal par exemple serait classé 40 ème au nombre de victoires alors qu'il est à la 24 ème position dans notre classement. C'est aussi visible pour Björn Borg qui a eu une carrière plus courte que la moyenne et est cependant classé dans le top 10 de notre classement.
    Pour ce qui est de la carrière en cours d'un certain nombre de joueurs, vous avez remarqué qu'il y a un biais. On peut penser à un classement annuel qui diffère parfois du classement ATP et IDF.

     

    sports,graphe,tennis,analyse,réseau,vulgarisation

     

    Il est possible aussi de penser à un classement par type de surface qui donnerait Jimmy Connors gagnant pour l'herbe et Andre Agassi pour les surfaces dures. Si l'on considère le meilleur joueur des tournois en terre battue c'est Guillermo Villas.

    En faisant le calcul par décennie, Jimmy Connors est le meilleur pour les années 70, Ivan Lendl pour les années 80, Pete Sampras pour les années 90 et Roger Federer pour les anées 2000.

    Le classement par "Prestige" est donc une nouvelle forme de classement qui ne coïncide d'ailleurs pas toujours avec les classements techniques et qui permet en outre de faire des comparaisons sur des temps longs.

    Le journaliste sportif
    -
    Merci, je crois que j'ai tout compris, enfin la partie non technique. Vos inclassables mathématiques ont prouvé leur incroyable  efficacité et ont eu raison de mes inclassables joueurs de tennis.

    Moi
    -Si vous voulez de plus amples informations sur la partie technique de ces classements, je vous renvoie à l'article original de Filippo Radicchi publié sur ArXiv. Voilà c'est fini.

     

     

  • Epidémies philosophiques

    h1n1.jpgLes épidémies n'épargnent personne, pas les politiques et encore moins les philosophes, une population qui semble particulièrement exposée.

    Après la gödelite (utilisation des conclusions
    des théorèmes de Gödel hors champ des mathématiques), la chaotite (utilisation de la théorie du chaos hors champ des mathématiques) , la catastrophite (utilisation de la théorie des catastrophes hors champ des mathématiques) voilà arrivé le temps de la botulite (utilisation de sources non vérifiées dans le champ de la discipline)...

    Quelle est la plus grave de ces épidémies?

    Lire la suite

  • La zététique ou comment distinguer Science et PseudoScience

    Qu'est-ce que la science? Comment distinguer un argumentaire scientifique de ce qui n'en est pas un? Ou pire de ce qui ne l'est pas tout à fait? Raisonnements éronnés, glissements de sens, effets de rétorique, les techniques sont nombreuses pour nous faire avaler l'ersatz à la place du produit original. Produit d'ailleurs qui se prête bien mal à sa digestion par le grand public. Mais tous les coups sont-ils permis? Ne finit-on pas par s'habituer au packaging? Et ne reproduit-on pas, parfois malgré-nous, les biais que l'on souhaiterai éviter?

    Les mathématiques ne sont pas exemptes de cette vulgarisation abusive ou de leur usage détourné. On y trouvera comme exemple, la célèbre maladie de la Gödelite, c'est à dire des conclusions des théorèmes de Gödel mises à toutes les sauces, le fameux Chaos et son effet papillon, la vision très mystique et pythagoricienne du monde, la théorie des catastrophes utilisée de façon... catastrophique et nos plus grands mathématiciens oscillant entre grandeur et décadence. Le Post-modernisme quant à lui fut friand d'un vocabulaire mathématique, dont l'utilisation est bien souvent inadaptée en même temps que le sens des concepts  sous-jacents incompris.

    A l'interstice du monde scientifique qui diffuse  et du grand public, la zététique propose d'une part de lister les principales sources d'égarement et de confusion, aussi bien dans les textes que dans les titres des revues de vulgarisation. Elle offre aussi un matériau pédagogique pour s'exercer et pour traiter des cas "d'école".

    Après avoir lu la thèse de Baudoin Jurdant : Les problèmes théoriques de la vulgarisation scientifique, je me suis attaqué à une  autre thèse, plus orientée vers les cas pratiques, celle de Richard Monvoisin, Pour une didactique de l'esprit critique.


    Entre carpaccios et effets paillasson, le propos est intéressant et permet de disposer d'indicateurs concrets pour déceler les effets utilisés afin de valider un propos qui n'a rien de scientifique alors que son auteur le proclame ou le présente comme tel ou en fait un argument qui devrait être irréfutable.

    Au fur et à mesure de la lecture, on découvre des encarts faisant apparaître une maxime intitulée "Facette Z" (comme Zététique ou Zorro?). Elle permet de synthétiser un passage incontournable pour diffuser au plus près les objets de Science. Un exemple parmi beaucoup d'autres: "Les faits, rien que les faits quelquesoit la personne qui les rapporte".

    On trouvera un résumé-condensé des facettes Z dans le cours de Zététique-Méthodologie Scientifique de Broch à la page 47.

    Il est intéressant de noter dans un sondage de 2001 (page 36), que "seulement" 72.3% des européens pensent que les mathématiques sont plutôt scientifique contre 92.6% pour la médecine et 52.7% pour l'astrologie!

    Il est à noter aussi l'existence de l'observatoire de Zététique et de l'AFIS.

    Bonne lecture.


    Weird image from paranormal night

    Photo: dgj103

  • Résultats du sondage sur la vulgarisation mathématique

    Vous avez été 60 personnes à répondre au sondage sur le thème  "La vulgarisation mathématique est-elle possible?" et je vous en remercie.

    Je vous livre ici les principaux résultats:

     

    sondage 6.jpg

    sondage 1.jpg


    sondage 11.jpg
    Informer le grand public
    Eduquer le grand public
    Parler de science
    Diminuer la frature entre savants et ignorants
    Autres



    sondage 3.jpg
    Utiliser des termes techniques quitte à rester obscure
    Simplifier le plus possible afin qu'elle puisse être comprise par tous
    Multiplier les niveaux de technicité quitte à rendre le message diffus

    Lire la suite

  • La vulgarisation mathématique est-elle possible?

    Je lis en ce moment un livre très intéressant qui est en fait la réédition de la thèse de Baudoin Jurdant intitulée "Les problèmes théoriques de la vulgarisation scientifique". Je me suis toujours demandé si la vulgarisation mathématique était vraiment possible, principalement pour répondre à la mission qu'elle se fixe implicitement, celle de développer l'image et la vision des mathématiques auprès d'un public qui n'y est pas nécessairement disposé. Il y a quelques temps, j'avais lancé un petit sondage sur l'utilité de la vulgarisation. Le questionnaire ci-après permettra peut-être de mieux cerner le sujet. N'hésitez pas à y répondre même de façon très incomplète, c'est aussi un indice de la difficulté de la vulgarisation et en particulier de la vulgarisation mathématique.

     

     

     

    Vos réponses