Ok

En poursuivant votre navigation sur ce site, vous acceptez l'utilisation de cookies. Ces derniers assurent le bon fonctionnement de nos services. En savoir plus.

Culture Générale - Page 34

  • Les mathématiques en questions: 1743-2008

    En 1743, le Révérend Père Regnault de la compagnie de Jésus publiait ses " Entretiens mathématiques ", sorte de cours dialogué entre Eudoxe et Ariste dont on peut découvrir un extrait ci-après :

     

    Texte non disponible
    Entretiens mathématiques sur les nombres, l'algébre, la géométrie, la trigonométrie rectiligne, l'optique, la propagation de la lumière, les télescopes, les microscopes, les miroirs, l'ombre & la perspective De Père Regnault, Regnault (Noël)

     

     

    En 2008, La Recherche publie un numéro Hors-Série Les Mathématiques en 14 mots-clés. L'intégralité des articles est accessible à des Terminales S, certains articles qui ne contiennent pas de formules avec ln, exp ou des notations intégrales peuvent même être lus par un public très large voulant étendre sa culture générale comme le laisse entendre le titre de l'édito "Les mathématiques pour tous". Les 14 articles extraits de la rubrique mensuelle Bac to Basics se présentent, tout comme les entretiens du Père Regnault, sous la forme de questions réponses, dont voici un cours extrait :

    Que se passe-t-il quand on les additionne ( il s'agit des nombres premiers )?

    Nous l'avons vu, la raison d'être des nombres premiers est de permettre une décomposition des entiers en produit de facteurs premiers. La multiplication est ainsi l'opération naturelle pour parler de nombres premiers. L'addition, en revanche, pose de très sérieux problèmes, notamment une célèbre question qui compte parmi les plus anciennes et les plus difficiles des mathématiques : la « conjecture de Goldbach ». Elle affirme que tout entier positif pair (non nul) peut s'écrire comme somme de deux nombres premiers. Par exemple, 18 = il + 7,26 = 13 +13, etc. Posée il y a près de trois siècles, cette question, qui s'énonce en quelques mots d'un vocabulaire accessible à tous, résiste encore et toujours aux assauts des mathématiciens.

    Force est de constater que la forme dialoguée n'a pas perduré en ce qui concerne l'édition des livres d'enseignement des mathématiques mais qu'elle reste bien présente pour les vulgariser.

    maths14mots.jpg


    Les 14 mots-clés en question sont :

    les nombres premiers,

    les nombres complexes,

    pi et la quadrature du cercle,

    les polynômes,

    les fonctions,

    les intégrales,

    le point, le triangle,

    les graphes,

    les algorithmes,

    le programme,

    la simulation numérique,

    le hasard,

    les sondages.

    Les illustrations de Jean-Pierre Cagnat contribuent,elles aussi, à la réussite de ce numéro.

     

  • Le séquencement du génome mathématique : la preuve formelle

    Comment les mathématiciens prouvent-t-il un théorème ?

    Lorsqu'ils le prouvent d'une façon traditionnelle, ils présentent les arguments les uns à la suite des autres, comme un récit. Ils s'appuient sur des résultats précédemment démontrés ( par eux ou par d'autres), ils cachent les détails dont ils sont certains que les experts qui les liront n'auront pas besoin pour les comprendre, ils prennent des raccourcis pour rendre la lecture moins ennuyeuse. 
    La validité des arguments avancés est accordée après un examen minitieux par d'autres mathématiciens de la longue ( très longue parfois ) preuve ou au cours de discussions informelles, lors de séminaires, de cours ou après publication dans des revues spécialisées.
    Lorsque ces experts parviennent au coeur de la démonstration, ils affinent la lecture et généralement les erreurs qui ont pu se glisser dans la démonstration sont trouvées. Cependant l'histoire des mathématiques n'est pas exempte d'exemple où il a été mis un temps très important pour que la communauté mathématique découvre une erreur ou un résultat faux. De plus, dans quelques cas récents, la lecture des preuves a été particulièrement longue et compliquée, d'autant plus que maintenant de plus en plus de preuves utilisent du code informatique.

    Comment les mathématiciens peuvent-ils être sûrs que de telles preuves sont fiables ?

    De façon habituelle, les mathématiciens, s'ils ne savent pas résoudre un problème, le ramènent à un problème qu'ils savent résoudre. S'ils ne peuvent plus faire de démonstration à la main, il suffit qu'ils fassent faire à l'ordinateur ce qu'ils faisaient usuellement à la main. Mathématiciens et informaticiens  ont donc commencé à développer le vaste champ de la preuve formelle. La preuve formelle nécessite la vérification de chaque inférence à partir des axiomes de départ. Si les mathématiciens ne produisaient auparavant aucune preuve dans un langage formel, c'est qu'il aurait été impossible de la faire lire par la communauté mathématique, mais maintenant qu'un ordinateur peut lire et valider une preuve, il risque d'en être autrement. Les avancées dans la preuve formelle sont telles qu'il est maintenant possible de l'utiliser pour des tâches difficiles.

    Mais jusqu'où iront-ils ?

    Si les ordinateurs ( aidés par les mathématiciens et les informaticiens ! ) sont maintenant capables de se lancer dans les démonstrations, ils sont aussi en mesure de se lancer dans l'exploration des mathématiques elles-mêmes et d'émettre des conjectures ( hypothèses pour les autres disciplines). On peut ainsi les laisser chercher quelques relations qui n'auraient pas été vues par l'oeil du mathématicien. Les mathématiciens peuvent aussi se lancer dans l'observation des ordinateurs qui parcourent les mathématiques et apprendre ainsi de nouvelles choses. Il s'agirait d'un changement profond dans la façon de concevoir les mathématiques et de les faire. Un rêve serait d'ailleurs de voir les ordinateurs en mesure de valider toutes les preuves des théorèmes fondamentaux, activité qui s'apparenterait au séquencement du génome mathématique.

    La source en anglais Science Daily

     

    L'INFORMATIQUE: UN METIER D'AVENIR ! - THE COMPUTING: A PROMISING FIELD !

    Un mathématicien post-moderne

     

  • Les graphiques : un succès incontestable des mathématiques

    Le site Swivel ne regroupe pas moins d'environ  1 700 000 graphiques. La lecture d'un graphique n'a pas toujours été possible, il a fallu créer ce concept, qui s'est avéré d'ailleurs être une remarquable idée marketing tant sa diffusion fut généralisée.

    Au hasard de mes recherches sur ce site j'ai pu trouver les quelques graphiques suivants :

    Wine and Violent Crime

     

     

    Caffeine from all these sources (mg per day) by Country

    Total math literacy and Female math literacy by Country

     

  • Les maths votent Obama !

    Obama_Portrait_2006.jpgA quoi bon faire des élections si les modèles mathématiques prédisent tout. Etrange monde que celui dans lequel nous vivons qui créé à force de modélisation une seconde terre virtuelle ( et pourtant bien réélle ) mais modélisée mathématiquement. Des cracks financiers, sous-estimés à cause de l'inutilisation de modèles trop complexes, en passant par les divers scénarios de modification climatique, les opérations chirurgicales qui ne nécessiteront plus d'intervention humaine, jusqu'aux élections américaines, les modèles mathématiques sont partout. Ils permettent dans un cas de se déplacer avec une très grande précision dans la géométrie complexe du corps humain sans altérer les parois, de se projetter à la surface de la terre dans cent ans, de prévoir l'efficacité de nouveaux médicaments sur une maladie ou l'impact d'une campagne de vaccination sur le taux de cancer.


    Ici, un modèle mathématique remplace le vote de millions d'américains. Ce modèle qui a préditl e gagnant des élections américaines six fois de suite vote cette année pour Obama. Il résume presque le vote de l'Amérique toute entière à une simple formalité inutile et réduit l'espace politique à sa modélisation numérique.

    Le modèle du professeur Lichtman, élaboré en collaboration avec un mathématicien russe, Volodia Keilis-Borok, est construit autour de 13 variables, appelées « clés ». Ces dernières ont été déterminées à partir des résultats obtenus aux présidentielles de 1860 à 1980.

    Lichtman ironise même en affirmant :  « Les démocrates auraient pu tirer au hasard un nom d'un annuaire téléphonique et gagner la présidentielle cette année ». Extrait de l'article de Yahoo News.


    La modélisation s'infiltre dans tous les domaines, et cela ne peut que nous faire réfléchir de façon profonde sur la nature de notre société, car ici il ne s'agit plus seulement de sondages, mais de modèles autonomes permettant une prédiction alors que le sondage n'est quant à lui qu'une photographie à un instant donné. L'interprétation d'un sondage est d'autant plus aléatoire qu'elle est éloignée du moment du vote réel . Un modèle est beaucoup plus indépendant et s'il demande certainement quelques données d'ambiance, il ne se réduit pas à leur seule interprétation. Des variables principales, autres que les résultat d'un sondage avant les élections, ont été dégagées. Ce sont principalement de leur qualité, de leur indépandance et de la mécanique mathématique les reliant que dépendra la fiabilité d'un modèle.

    Mais un modèle , ça ne suffit pas, me direz-vous, pour pouvoir conclure. Qu'à celà ne tienne, puisque les principaux les modèles sont passés en revue dans cet article en Anglais, comme dans le cas du réchauffement climatique où plusieurs moèles et scénarios sont étudiés.

    La réponse est sans appel : 6 des 9 principaux modèles donnent Obama gagnant ! Et chose surprenante le modèle de Litchman -Volodia Keilis-Borok dont il est question dans l'article précédemment cité, n'apparait pas dans la liste. Il y aurait donc au moins 10 modèles ! Le modèle de Klarner prévoit même la composition de la chambre des députés et du Sénat.

    Serions-nous donc dans un nouveau monde où l'on attend avec impatience que les faits réels confirment ou infirment les prédictions des modèles? Une catastrophe viendrait alors avec un fait réel qui contredirait les prédictions et donc la stabilité des modèles utilisés. La référence dans ce cas ne serait plus la réalité ( y compris sociale et politique ) mais sa modélisation.

    Si cela vous inspire quelques commentaires.

  • Les blogs de maths au CNRS...

    image des maths.jpg

    "Images des mathématiques" est une revue publiée par des mathématiciens de haut niveau rassemblant des articles dont l’ambition est de faire connaître, de manière précise et attrayante, des mathématiques en train de se faire, à des lecteurs scientifiques, en particulier des étudiants en mathématiques. Les blogs de maths se sont tous fait écho de cette double publication en 2004 et 2006. Les archives sont disponibles article par article ICI.

    L'ancien site un peu désuet ICI s'est transformé en un site beaucoup plus dynamique ICI avec une publication d'articles associés à un code couleur suivant leur difficulté ( tiens j'ai déjà vu ça quelque part :) ), mais là il s'agit de descendre des pistes de ski de différentes couleurs. Pour l'instant elles sont vertes et bleues. J'espère que toutes les couleurs seront représentées et si je ne rechigne pas à me faire une petite noire au ski, je ne suis pas persuadé que mon niveau mathématique puisse me permettre une telle prouesse dans les pentes arides de cette discipline.

    On trouvera aussi les billets des habitués et une rubrique  "Portraits de mathématiciens". On trouvera celui du très surprenant "Magic Diaconis" qui est passé de la magie en cabaret...à une chaire d'excellence en mathématiques !

    Les blogs de maths n'ont pas été oublié et sont tous regroupés dans une catégorie "lien/blogs". C'est ainsi que je me retrouve tout près du lien pointant vers Alain Connes et Terry Tao. Et moi je dis où il y a de la gène, il n'y a pas de plaisir.

    Mon avis est que tout cela va dans le bon sens. Il semble que la communication autour des mathématiques commence à réellement prendre son envol. Il est important qu'elle soit considérée comme une composante fondamentale dans le regard que pourra porter le grand public à cette discipline d'ici quelques années. Elle devra être diversifiée et s'adresser à des publics très différents du néophyte au spécialiste en passant par  l'amateur averti.

    Les institutions de recherche et les universités se doivent de développer ces aspects afin que les "mathématiques" qui sont non seulement exigeantes et difficiles ne restent pas en plus invisibles ce  qui signerait presque leur arrêt de mort dans l'enseignement, d'autant plus que nous avons déjà vu que certains hommes politiques, y compris des scientifiques, peuvent franchir facilement le pas de l'extinction de l'espèce déjà presque en voie de disparition, sans beaucoup d'état d'âme!