Ok

En poursuivant votre navigation sur ce site, vous acceptez l'utilisation de cookies. Ces derniers assurent le bon fonctionnement de nos services. En savoir plus.

Philosophie - Page 10

  • La classification mathématique des textes

    Je viens de trouver un document de 8 pages très intéressant de Dominic Forest et de Jean-Guy Meunier (UQUAM) sur le sujet de l'utilisation des mathématiques en vue de la classification du contenu d'un texte. Une expérimentation sur le Discours de la Méthode de Descartes est donnée en exemple.

    C'est ICI

  • La vulgarisation, un art haut en couleurs

    Arche_arc_en_ciel.jpgSi vous êtes un habitué de ce blog depuis sa création, vous n'avez pas pu manquer le fait que certains sujets me tiennent plus à coeur que d'autres: Gödel, la philosophie, l'art, les actualités mathématiques, l'épistémologie, l'enseignement des mathématiques, les outils web, et aussi la Vulgarisation avec un grand V que j'élève au rang d'art majeur.

    Les lieux communs sans cesse revisités et les images préformées nous laissent souvent penser que la vulgarisation tient plus du rabotage grossier que de l'art. Ce serait la discipline dans laquelle les aspérités qui feraient mal au plus grand nombre seraient éliminées pour laisser place à un objet brut, lisse, édulcoré, au contenu aseptisé en vue de son assimilation par la masse sans indigestion. Personnellement, ce n'est pas du tout comme cela que je vois les choses. Pour moi vulgariser c'est comme opérer la décomposition de la lumière blanche avec un prisme. A l'une des extrémités du spectre on trouve les ultra-violets, qui correspondraient à l'hyperspécialisation, tellement fermée que les connaissances ne peuvent se transmettre qu'entre pairs. Ni en haut, ni en bas, le discours du spécialiste est un parmi les autres sur un sujet donné. Il possède ses exigences, répond à un besoin, comme toutes les composantes colorées de la lumière décomposée. A l'autre extrémité du spectre se trouvent les infra-rouges. On pourrait les associer  au socle d'une pyramide au dessus de laquelle toutes les strates de la vulgarisation et des connaissances les plus spécifiques peuvent s'empiler. Établir cette base, retrouver les infra-rouges lorsque l'on est un spécialiste pointu des ultra-violets demande les plus hautes compétences. La vision  acérée doit s'ouvrir de la façon la plus vaste pour voir les moindres détails, y compris les cailloux du chemin sur lequel on marche. Il faut enlever ses lunettes de travail pour voir les couleurs réelles et les décrire.

    De mon point de vue, peu de personnes possèdent ces capacités de vulgarisation, de simplifier sans dénaturer, de pouvoir approfondir à toute occasion de façon graduée, de pouvoir surfer et plonger à loisir dans le vaste océan des connaissances, et tout particulièrement celui des mathématiques qui ne se prète guère à l'exercice et demande d'autant plus de dextérité.

    Lire la suite

  • Le prix Leibniz

    Dans mon article précédent, qui a été  inspiré par la possible disparition de la géométrie dans les programmes de seconde du lycée, je posais la question de savoir si l'homme était aujourd'hui "sapiens absolutis", c'est à dire s'il développe encore seul et de façon absolue les outils de la recherche scientifique ou bien s'il est devenu "numericus relativis", c'est à dire, qu'en gros il ne peut dorénavant que faire intervenir le monde numérique dans toute avancée de la connaissance, le savoir nouveau n'étant presque plus accessible directement mais est impérativement médiatisé par la machine et le monde numérique.

    La question peut sembler un peu futuriste posée comme cela. Elle me parait cependant  être actuellement, au coeur de la problématique de la transmission du savoir scientifique dont on voit en ce moment l'extrême tension centrée sur le contenu du programme de mathématiques de seconde ainsi que dans l'absence d'une philosophie de la transmission dans une société technologiquement avancée. Cela ne fait qu'accroître la confusion générale, laissant sans réponse ou sans débat des questions fondamentales concernant ce que l'on doit transmettre aux générations futures, comment on doit le transmettre et comment on peut l'évaluer. Ceci est d'autant plus regrettable que l'école qui est déjà au coeur des tensions sociales se retrouve ici aussi bien seule, aucune réponse ou aide solide ne venant de l'extérieur, et elle doit répondre à l'aide des ses seuls petits leviers du contenu des programmes de science et de l'organisation interne des établissements à ces questions majeures.

    Leibniz, grand mathématicien et philosophe,  est éponyme d'un prix très peu connu. Et pour cause, les 100 000 $ de récompense n'ont pas encore été distribués. Ce prix est en fait destiné à distinguer un ordinateur, ou plus exactement un programme d'ordinateur. Mais pas n'importe lequel, ce sera un programme qui permettra de trouver un théorème permettant de faire une avancée significative dans le domaine des mathématiques ( ATP: Automatic Theorem Proving ) tel que décrit comme suit :

    "The quality of the results should not only make the paper a natural candidate for publication in one of the better mathematical journals, but a candidate for one of the established AMS prizes (e.g., Cole, Veblen) or even a Fields Medal. The proofs should not be less sophisticated than those of classical theorems when they first made their appearance--such as, for instance, the Fundamental Theorem of Algebra or one of the fixed point theorems (Brouwer, Leray-Schauder). Though obviously difficult to define precisely, the role of the computer program in the argument should not be mere auxiliary. Novel techniques, meaningful and original definitions, suggestions of interesting intermediate results, perspectives of wider application--any one of these contributions, and others that cannot be foreseen today, would meet the criteria."

    Alors sommes nous loin de voir passer dans nos flux RSS, l'attribution du prix Leibniz à telle ou telle université? Personnellement, je ne sais pas, certainement oui, mais l'horizon semble se rapprocher à grands pas. Par exemple, l'analyse des oscillations d'un simple pendule par un ordinateur n'ayant aucune connaissance préalable en physique et en géométrie (tiens ça me rappelle quelques chose...) a déjà permis d'extrapoler les lois du mouvements.

    Ceci semble étayer l'hypothèse que j'ai émise, à savoir qu'homo sapiens absolutis tend à évoluer vers homo numericus relativis...

    Sacré Darwin!


    Source:

    Slate.fr

    Pour compléter :

    The Fredkin Challenge Match

    Vers la robotisation des découvertes scientifiques

     

    Prigioniero di me stesso

     

    Photo: Emandir

  • De la philo de comptoir

    Philobistrot est une "idée à la con" d'Edouard et Julien, qui sont doc et post-doc de philo. Elle a germé lors de leur très nombreuses rencontres au bistrot.

    6 dialogues sont déjà nés de cette "écoute" de nos deux protagonistes, dans lesquels on entend presque les pintes de bières qui se vident.

    Le 6e Dialogue aborde par exemple la créativité en mathématiques. On trouvera ici les infos pratiques sur ce dialogue... ( prix de la pinte et articles de Delahaye!).

    Je n'ai pas encore lu les autres dialogues mais j'y retourne...

    le café d'en bas ...

     

  • Il était une fois les mathématiques...

    Il était une fois, il y a bien longtemps de cela, la Philosophie embrassait toutes les Sciences. Certes ce que l'on appelait Science autrefois n'avait qu'un lointain rapport avec la façon dont on les pense maintenant. Les mathématiques étaient, suivant l'usage que l'on en faisait, la philosophie que l'on choisissait, préalables à toute connaissance ou détenaient au contraire une faible valeur probatoire en rapport de la Physique. L'essentiel était qu'elles soient bien au chaud sous la coupe de mère Philosophie et qu'elles alimentent les dialogues où le mathématicien se trouvait être, selon la situation, maître du monde de la connaissance ou artisan de l'inutile. Dans chacun des deux cas, la simple connaissance de l'existence du mathématicien suffisait et il fallait laisser à ces spécialistes ou à quelques illuminés, la tâche ingrate de faire des mathématiques. Et puis vient petit à petit l'idée grandiose que l'investigation rationnelle de la nature ne pouvait se faire qu'en respectant une méthode rigoureuse et quasi-mathématique. La Philosophie devait réserver une place de choix, un espace de plus en plus grand aux mathématiques qui ne cessaient de grandir et de mûrir. Les choses commencèrent à s'améliorer nettement pour notre Mathématique et leurs représentants. L'ensemble prit d'ailleurs tellement de place qu'ils durent se séparer de la trop encombrante et lourde philosophie pour pouvoir se développer librement. La Mathesis Universalis prenait son envol. De l'enseignement des plus jeunes enfants aux grands corps d'Etat, il n'était pas d'endroit ( au moins en France ) qui ne voyait pointer le bout du nez de la Reine des Sciences. Alors les mathématiciens s'habituèrent petit à petit à parler plus forts entre eux, fiers de leur position dominante, de toutes ces choses importantes que l'on ne pouvait saisir qu'à la condition d'une pratique intensive et exigeante. Et puis vint le temps de la Grande Harmonisation, qui malgré quelques échos qui s'entendaient déjà bien forts d'une impossible puissance infinie, se fit et emporta aussi avec elle tout le flot des paroles des mathématiciens qui devaient s'incliner devant autant de rigueur et de force. Il était même de bon temps de dire que ce qui était vrai dans les mathématiques, devait aussi l'être pour leur enseignement. Alors la mathématique qui embrassait à son tour, toutes les mathématiques et les mathématiciens se mirent à réver toujours plus fort et toujours plus loin. Les mathématiciens en oublièrent d'ailleurs presque qu'il fut un temps où leur existence était quasiment décorative ou utilitaire, et que ce temps pourrait revenir très vite. Ils oublièrent aussi au passage de parler au peuple de ce que pouvait bien contenir leur science de haut vol. Mais Mère Philosophie n'était plus là pour rattraper ses marmots et l'enfant qui avait grandit devait se débrouiller seul, solitude qu'il avait d'ailleurs bien choisi. Et puis les choses commencèrent à se corser lorsqu'un certain ministre osa clamer l'inutilité pure et simple des mathématiques et presque de leur enseignement. Les mathématiciens avaient beaucoup parlé entre eux et ne s'attendaient pas à si peu de considération pour leur discipline. Puis vint la grande crise, pas une crise des fondements comme ils eurent l'habitude d'en essuyer pas mal de façon interne, mais une simple crise financière, extérieure, qui les projeta sur le devant de la scène. Ils furent accusés de tous les maux et bon nombre de procès leur fut intentés. Les mathématiques et les mathématiciens furent ébahis, car ce qu'ils prenaient pour de la grandeur, s'était transformé devant leurs yeux en décadence. Et comment lutter puisqu'ils n'avaient dit mot jusque-là sauf dans quelques cercles tellement restreints que rien ne filtrait vers l'extérieur, ils ne savaient d'ailleurs pas ce qu'était un micro ni une caméra. Comment rattraper l'étendue des dégats sans porte-voix? De l'enseignement primaire à la recherche de haut niveau, les mathématiques, déconnectées de leur sens profond, devenaient illisibles et presque inutiles à la société toute entière. Deux questions légitimes apparaissent de fait: A quoi servent les mathématiques et est-il utile de les enseigner? Si d'un point de vue interne les réponses affirmatives à ces deux questions semblent couler de source, cela est bien loin de faire l'unanimité à l'extérieur.

    L'élément le plus important est que les philosophies platoniciennes, aristotéliciennes et cartésiennes qui sont encore associées aux mathématiques ne sont plus efficaces pour répondre à ce type de questions. Elle butent sur le simple fait qu'elles n'ont pas été pensées au sein de sociétés technologiquement développées (on peut résumer en disant en gros que le développement technologique d'une société est corrélé avec sa capacité de simulation et de modélisation). Ainsi avec ce types de philosophies, il est impossible de penséer les mathématiques telles qu'elles sont et telles qu'elles devraient apparaître dans l'enseignement.

    Il semble donc urgent d'activer une philosophie sous-jacente aux mathématiques sur laquelle elles peuvent s'appuyer pour produire un discours justificateur et explicatif. Un malheur n'arrive jamais seul et non seulement les mathématiques ont été détachées de leur bases philosophiques depuis près de trois siècles mais on ne peut pas dire que la philosophie liée à la complexité du monde et aux sociétés technologiquement avancées soit en grande forme. Il manque donc le lien mais aussi le terreau.

    Il serait nécessaire que les mathématiques actuelles et leur enseignement soient associés à ce que je nommerai "la philosophie de la transmission". Le terme est suffisamment explicite et englobant pour faire sens. La transmission peut d'une part s'entendre au sens collectif ou individuel ( développement durable, générations futures, pédagogie, citoyenneté ), au sens politique ( choix décisifs ), au sens technologique ( récursivité, itération, modélisation, simulation ) ou au sens spirituel ( charité, don, action envers son prochain...). La transmission s'ancre dans l'action, la pratique et l'instant. Un développement de la philosophie de la transmission, intégrant la complexité dynamique, est devenue impérative pour solidifier l'édifice et lui permettre de s'élever à partir de racines profondes. Or force est de constater la maigreur de la littérature sur ce sujet.

    Le travail doit s'effectuer dans plusieurs champs distincts, complémentaires et inséparables.

    • Il faut modifier la philosophie sous-jacente aux mathématiques
    • Il faut modifier le discours sur les mathématiques
    • Il faut modifier modifier le discours sur l'enseignement des mathématiques

     

    • Modifier la philosophie sous-jacente aux mathématiques

    Faire évoluer et converger les philosophies qui sous-tendent les mathématiques en une philosophie de la transmission, de la pratique et de la diffusion centrée sur le moment présent et dont l'acte transcendant est le partage.

    La pensée est un acte et comme tel, elle vit dans l'instant. L'idée est sa réalisation.

    La philosophie de la transmission permet de penser le présent comme qualité potentiellement transcendante. La pratique, et la ritualisation des actes (physiques ou de pensée) redeviennent porteurs de sens en tant que balises visibles et régulières d'un chemin inconnu mais au but clairement identifié .

    Mettre le paradoxe de l'intransmissibilité au centre du questionnement philosophique.

    Replacer les mathématiques comme un élément central de la philosophie de la transmission ( rationnalité, outil, génération de problèmes philosophiques majeurs, socle des sociétés technologiquement avancées, éléments du choix et de la décision... )

    Il faut placer le récepteur, le destinataire, le lecteur, au centre de l'édifice philosophique et non pas le producteur. Ne pas le transformer en consommateur mais le penser comme agent actif et récepteur responsable d'un flux dynamique. La jouissance de l'instant se fait par mesure de son intensité et de sa qualité transmissive (interne ou externe).

     

    • Modifier le discours sur les mathématiques

    Faire évoluer le vocabulaire sur la description des mathématiques

    Elles sont utiles à la compréhension du monde et la permettent (physique, finances, interpolation, statistiques, théorie des jeux, chaos, complexité, comportements dynamiques, évolutions).

    C'est un outil indispensable aux générations futures (simulation, modélisation, extrapolation).

    Elles sont le fruit d'une synthèse universelle.

    Elles permettent de produire un discours rationnel sur les régularités et sur la complexité du monde.

    Elles permettent de parcourir de façon rationnelle un chemin inconnu.

    La pratique est la base de l'activité mathématique. La pratique des mathématiques c'est les mathématiques. On s'exerce à la démonstration, comme à toute technique mathématique.

    Repenser la place de la géométrie et de la preuve. La démonstration devient porte d'entrée dans le monde des mathématiques et non objectif final visé ( il y a beaucoup d'indécidabilité).La preuve n'est pas conclusive, elle est introductive (pour la visite de l'édifice mathématique, pas pour leur enseignement), la pratique (expérimentation) est conclusive et doit être effectuée de façon rigoureuse et sérieuse. Pour préciser, le preuve peut être trouvée sur le chemin de l'expérimentation (ou non) et le cas échéant cela laisse la place à l'expérimentation ( qui peut être celle de la preuve d'ailleurs !). C'est en ce sens que je dit que la preuve est nécessairement introductive et non terminale, c'est l'expérimentation qui l'est, comme outil de découverte d'un surplus de complexité ( si elle existe).

    La simplicité (toute relative!) se montre par la preuve (et ce qui ne veut pas dire que la preuve est simple), alors que la complexité ne se laisse attraper que par l'expérimentation.

    La compréhension n'est pas conditionnelle, c'est la pratique qui l'est.

    Modifier la dynamique de la pratique des mathématiques et la considérer d'origine intérieure se prolongeant vers l'extérieur et non le contraire (de toutes façon c'est une question de foi!).

    Il ne faut pas hésiter à avoir recours à la mise en forme de la présentation des mathématiques, au prosélytisme, rendu possible par les médias et principalement celui qui est le plus adapté aux mathématiques : le monde numérique et Internet.

     

    • Modifier le discours sur l'enseignement des mathématiques

    Donner du sens pour ceux qui ne les pratiqueront plus ou presque plus dans leur vie active et faire pratiquer ceux qui devront les utiliser et les produire de façon assez intensive

    Penser l'hétérogénéité (contenue) comme réellement positive en libérant les leviers d'action positifs et en diminuant l'idée de la figure dominante de l'enseignant pour lui affecter une figure de leader de groupe et de facilitateur de la diffusion des savoirs et des techniques. S'appuyer sur l'énergie du groupe pour diffuser les connaissances et les techniques.

    L'élève ne construit pas son savoir, il construit sa pratique (elle peut être en vue d'augmenter son savoir!) et se met en contact avec les objets de savoirs et de technique en vue de leur intériorisation.

    Modifier la figure idéale-typique du prof de maths, possédant un stock énorme de savoirs « morts », en celle de l'honnête homme cultivé qui diffuse les connaissances au plus grand nombre, permet une analyse quantitative et rationnelle du monde complexe dans lequel nous vivons.

    Réhabiliter l'élève moyen comme praticien actif et positif.

    L'informatique permet d'une part de développer la pratique expérimentale ainsi que de répondre à la demande de rigueur associée à toute discipline scientifique par l'intermédiaire de la programmation.

    Mettre non pas la construction des savoirs au centre du processus de transmission mais l'apprentissage de la rationalité des pratiques. Il faut replacer l'orthodoxie des pratiques et des rituels au centre de l'apprentissage, tout en favorisant et encourager l'émergence de la créativité.

    La pratique régulière et la production interne (intention) sont indispensables à toute personne désirant structurer son esprit, se diriger vers des études scientifiques, des filières sélectives (par les mathématiques)

    La concentration dans l'instant est un élément essentiel de la profondeur des apprentissages, elle permet un accès à la durée, place la difficulté non pas comme obstacle mais comme état de temps, elle permet de pacifier le terrain psychique, elle permet de découpler le temps de la pratique orthodoxe ( en particulier celle des mathématiques) du temps vulgaire.

    Les limites des mathématiques doivent être clairement annoncées dès les petites classes afin de ne pas idéaliser (diaboliser) cette discipline au fur et à mesure de sa pratique. Pour s'en convaincre il suffit d'en parler avec des enseignants non scientifiques.

     

    Selon moi, il reste bien sûr une dernière phase au processus : infléchir l'enseignement des mathématiques, ses buts généraux, l'évaluation, sa place dans le système global mais je laisse la tâche de le faire à ceux dont mission leur est donnée et dont c'est le métier. Le mien est d'enseigner, pas de penser (sauf à mes cours...). 

     

    Transmission Control Protocol