Ok

En poursuivant votre navigation sur ce site, vous acceptez l'utilisation de cookies. Ces derniers assurent le bon fonctionnement de nos services. En savoir plus.

Philosophie - Page 12

  • Leibniz, le podcast, Dieu, le meilleur des mondes, le calcul différentiel et les algorithmes NP-complets

    Si avec un titre comme ça, si je n'arrive pas à la première ligne sur Google... je ne comprends plus rien !

    Voilà un petit texte comme je les adore.

    Je l'ai traduit de l'anglais. Il s'agit du podcast 83 de MathMutation. Un vrai régal.


    podcast

     

    Le texte original du podcast

     

    Ma traduction:

    Si vous êtes comme moi, vous vous rappelez probablement du roman satirique de Voltaire Candide comme l’un des romans du 18ème siècle les plus agréables que vous avez lu au lycée. Son intrigue implique un jeune homme plutôt idiot qui est instruit par un philosophe optimiste nommé Pangloss. Pangloss insiste sur le fait qu’ils vivent dans le meilleur des mondes, malgré qu’il ait perdu un oeil et une oreille, qu’il ait attrapé la syphillis, qu’il ait été vendu comme esclave et qu’il ait vécu l'épreuve de terribles désastres tels que le feu, les tremblements de terre, et un tsunami.

     

    Mais saviez-vous que la philosophie que parodie Pangloss provient de façon directe du développement du calcul ?

    Cette connexion vient du fait que Gottfried Leibniz, le co-inventeur du calcul différentiel, était aussi un philosophe de grande renommée. Vous vous rappelez certainement que la clé du calcul différentiel tient dans sa capacité à trouver la valeur maximale d’une fonction. Cela fonctionne parce que le calcul nous permet de regarder la pente d’une courbe, en mesurant de quelle façon elle monte ou elle descend, de façon infinitésimale en chacun de ses points.

     

    Quand une courbe a arrêté de monter et est sur le point de redescendre, sa pente est de 0 et elle a atteind un maximum local. Ainsi si vous pouvez déterminer le point où la pente d'une courbe est 0, vous pouvez trouver un maximum.

     

    Dans les mathématiques, cette idée est indiscutable. Mais Leibniz a étendu cette possibilité au domaine de la philosophie. Comme prémisse de base, il a commencé par une de sa religion chrétienne, en affirmant qu'il y avait un Dieu omniscient et tout-puissant qui a conçu l'univers.

     

    Un Dieu omniscient ou omnipotent connaitrait, très probablement le calcul et serait capable de produire un super-calcul divin beaucoup plus puissant que celui que Leibniz a développé.

    Etant omniscient, il connaitrait toutes les variables qui permettraient de décrire l’univers et de définir la fonction complexe qui permettrait la description correcte de l’univers.
    Supposons aussi que Dieu possède une bonté infinie,. Il est indicutable qu’il appliquerait son super-calcul à la fonction de bontée de l’univers et déterminerait ainsi son maximum absolu.

    Donc si quelquechose de local semble mauvais, c’est seulement parce qu’en association avec les autres variables de l’univers, ce doit être nécessaire pour atteindre ce maximum absolu.

     

    En réalité, je trouve que c’est dur de batailler avec un tel raisonnement. Des siècles après Leibniz, beaucoup de fonctions compliquées ont été définies, dont nous ne possédons pas d'algorithmes pour les optimiser dans un temps raisonnable, mais Dieu qui possèderait toutes les techniques mathématiques dont il a besoin, ne se soucierait pas des délais fixés. Après tout, s'il y a vraiment un dieu tout-puissant qui aime créer des univers, il peut aussi prendre son temps en le faisant, même s'il doit y passer plusieurs éternités en exécutant un algorithme NP-complet d’optimisation.

     

    Ainsi, si votre religion admet l’existence d’un Créateur omniscient et omnipotent, alors Pangloss et Leibniz ont tous les deux raison et l’on doit vraiment vivre dans le meilleur des mondes.

     

    Widget "Podcasts mathématiques"

  • Le paradoxe de la chambre chinoise

    14067.pngEn 1980, le philosophe John Searle décrit une expérience théorique qu'il a nommé "Le paradoxe de la chambre chinoise" :

    Une personne qui ne parle pas le chinois est enfermée dans une chambre fermée. Elle reçoit des messages glissés sous la porte d'une personne située à l'extérieur écrits en chinois.

    La personne située dans la chambre dispose cependant d'un livre (code) très utile qui lui permet de reconnaître un groupe de traits et de donner en réponse un groupe de traits correspondant. Il s'agit en fait d'une réponse possible et adapté au message chinois. Elle glisse en retour ce message sous la porte.

    La question est : que va penser la personne qui est à l'extérieur de la chambre puisque tout laisse supposer que quelqu'un d'intelligent connaissant sa langue est de l'autre coté de la porte, ce qui n'est pas le cas?

    Pour compléter : ICI

    Le podcast 79 Math pen pals en anglais de MathMutation et le texte associé : ICI

    Langage, conscience, rationalité : une philosophie naturelle, entretien avec John SEARLE, PDF de14 pages

     

    Searle pense que c'est une erreur de croire qu'on peut créer un esprit avec une machine de Türing, le cerveau est certes une machine mais il n'est pas implémenté par un processsus mathématique abstrait qui le ferait fonctionner comme une machine de Türing.

    Gödel pensait un peu l'inverse: le cerveau est une machine de Türing.
    Si le cerveau est une machine de Türing, comme le pensait Gödel, l'hypothèse philosophique matérialiste s'évanouissait puisque il n'y avait que deux issues possibles après cette hypothèse, soit d'avancer le théorème d'incomplétude qu'il venait d'énoncer, c'est à dire qu'il restera à tout jamais des propositions inaccessibles à l'esprit humain-machine de Türing, soit l'esprit humain est capable d'écrire des mathématiques complètes, il ne peut donc pas se réduire à une machine de Türing et possède une dimension qui dépasse la simple matérialité. Cette nouvelle dimension est celle d'un autre monde peuplé d'êtres bienveillants ou malveillants comme le précise lui-même le logicien :
    "Mon théorème montre seulement que la mécanisation des mathématiques, i.e l'élimination de l'esprit et des entités abstraites, est impossible, si l'on veut obtenir une fondation et un système satisfaisants des mathématiques". Les démons de Gödel de Pierre Cassou-Noguès.


    Gödel vs Searle, faites votre marché...

  • Le mandala de la vulgarisation scientifique

     

    mandala caro.jpg

     

    Un mandala pour expliquer la vulgarisation scientifique: c'est l'idée qu'a eu, il y a 15 ans, Paul Caro,  Membre Correspondant de l’Académie des Sciences et Membre de l’Académie des Technologies. Ce Mandala fut publié en poster dans l'un de ses livres " La Roue des Sciences. On le retrouve sur son site dans un document word en plusieurs parties , laissant une marque visible de recollage ( on y voit les démons en grand ).

    La science est créée au centre et diffuse vers l’extérieur à travers quelques barrières (cercles) et atteint l’extérieur (la société) dans quatre directions différentes symbolisées par les quatre portes. Quelques démons surveillent, gardent et exploitent  le contenu de la production scientifique aidés de quelques dragons …

    Au travers de ce mandala-dédale, le savoir tente de parcourir des routes, celle de l'enseignement, de l'industrie, du spectacle ou de l'imaginaire. Mais les démons veillent de près : au nombre de quatre, ils attendent avides. Il y a le démon de l'abstraction, le démon du parisianisme, celui des correspondances et le démon militaire.

    Le centre dynamique et mouvant, presque inaccessible, n'est atteint qu'après s'être affranchi des démons qui surveillent les portes du savoir et les murailles qui rendent difficile son approche.

     

    La dimension poétique et pédagogique du mandala ne se laisse guère enfermer dans le discours mais on peut y voir un bon récapitulatif de la façon d'approcher la compréhension de la science des hommes.

     

    Voilà un bien beau support de méditation !

     

    PDF du mandala :mandala caro.pdf

  • Platon est plus Socratique que Pythagorique

    Il en est, comme dit Aristote, qui d'une farousche stupidité, en font les desgoustez. J'en cognoy d'autres qui par ambition le font. Que ne renoncent ils encore au respirer ? que ne vivent-ils du leur, et ne refusent la lumiere, de ce qu'elle est gratuite : ne leur coutant ny invention ny vigueur ? Que Mars, ou Pallas, ou Mercure, les substantent pour voir, au lieu de Venus, de Cerez, et de Bacchus. Chercheront ils pas la quadrature du cercle, juchez sur leurs femmes ? Je hay, qu'on nous ordonne d'avoir l'esprit aux nues, pendant que nous avons le corps à table. Je ne veux pas que l'esprit s'y clouë, ny qu'il s'y veautre : mais je veux qu'il s'y applique : qu'il s'y see, non qu'il s'y couche. Aristippus ne defendoit que le corps, comme si nous n'avions pas d'ame : Zenon n'embrassoit que l'ame, comme si nous n'avions pas de corps. Touts deux vicieusement. Pythagoras, disent-ils, a suivy une philosophie toute en contemplation : Socrates, toute en moeurs et en action : Platon en a trouvé le temperament entre les deux. Mais ils le disent, pour en conter. Et le vray temperament se trouve en Socrates ; et Platon est plus Socratique, que Pythagorique : et luy sied mieux.

    Quand je dance, je dance : quand je dors, je dors. Voire, et quand je me promeine solitairement en un beau verger, si mes pensees se sont entretenuës des occurrences estrangeres quelque partie du temps : quelque autre partie, je les rameine à la promenade, au verger, à la douceur de cette solitude, et à moy. Narure a maternellement observé cela, que les actions qu'elle nous a enjoinctes pour nostre besoing, nous fussent aussi voluptueuses. Et nous y convie, non seulement par la raison, mais aussi par l'appetit : c'est injustice de corrompre ses reigles.

    Quand je vois, et Cæsar, et Alexandre, au plus espaiz de sa grande besongne, jouïr si plainement des plaisirs humains et corporels, je ne dis pas que ce soit relascher son ame, je dis que c'est la roidir, sousmettant par vigueur de courage, à l'usage de la vie ordinaire, ces violentes occupations et laborieuses pensées. Sages, s'ils eussent creu, que c'estoit là leur ordinaire vocation, cette-cy, l'extraordinaire. Nous sommes de grands fols. Il a passé sa vie en oisiveté, disons-nous : je n'ay rien faict d'aujourd'huy. Quoy ? avez-vous pas vescu ? C'est non seulement la fondamentale, mais la plus illustre de vos occupations. Si on m'eust mis au propre des grands maniements, j'eusse montré ce que je sçavoy faire. Avez vous sceu mediter et manier vostre vie ? vous avez faict la plus grande besoigne de toutes.

     

    Montaigne Essais Livre III chapitre XIII " De l'expérience " .

  • Les métamorphoses du calcul : conférence audio de Gilles Dowek

    61ec51bc5099af5f689896c5741ac278.jpg

    Gilles Dowek est informaticien, chercheur et professeur à l’École polytechnique. Il a reçu le Grand Prix de Philosophie 2007 de l’Académie française pour les Métamorphoses du calcul, une étonnante histoire des mathématiques, paru aux éditions du Pommier en 2007.

    Socle même de la méthode mathématique depuis l’Antiquité grecque, la notion de démonstration s’est profondément transformée depuis le début des années soixante-dix. Plusieurs avancées mathématiques importantes, pas toujours connectées les unes aux autres, remettent ainsi progressivement en cause la prééminence du raisonnement sur le calcul, pour proposer une vision plus équilibrée, dans laquelle l’un et l’autre jouent des rôles complémentaires.

    Cette véritable révolution nous amène à repenser le dialogue des mathématiques avec les sciences de la nature. Elle éclaire d’une lumière nouvelle certains concepts philosophiques, comme ceux de jugement analytique et synthétique. Elle nous amène aussi à nous interroger sur les liens entre les mathématiques et l’informatique, et sur la singularité des mathématiques qui est longtemps restée l’unique science à ne pas utiliser d’instruments. Enfin, et c’est certainement le plus prometteur, elle nous laisse entrevoir de nouvelles manières de résoudre des problèmes mathématiques, qui s’affranchissent de certaines limites arbitraires que la technologie du passé a imposé à la taille des démonstrations : les mathématiques sont peut-être en train de partir à la conquête d’espaces jusqu’alors inaccessibles.


    Une conférence de 25 mns sur Canal Académie : ICI

    Ajout du 05/05/08 :

    Le dossier complet de Futura-Sciences " Les métamorphoses du calcul" : ICI
    Les cartes blanches "mathématiques" de Futura-Sciences : ICI