Ok

En poursuivant votre navigation sur ce site, vous acceptez l'utilisation de cookies. Ces derniers assurent le bon fonctionnement de nos services. En savoir plus.

Philosophie - Page 9

  • De la philo de comptoir

    Philobistrot est une "idée à la con" d'Edouard et Julien, qui sont doc et post-doc de philo. Elle a germé lors de leur très nombreuses rencontres au bistrot.

    6 dialogues sont déjà nés de cette "écoute" de nos deux protagonistes, dans lesquels on entend presque les pintes de bières qui se vident.

    Le 6e Dialogue aborde par exemple la créativité en mathématiques. On trouvera ici les infos pratiques sur ce dialogue... ( prix de la pinte et articles de Delahaye!).

    Je n'ai pas encore lu les autres dialogues mais j'y retourne...

    le café d'en bas ...

     

  • Il était une fois les mathématiques...

    Il était une fois, il y a bien longtemps de cela, la Philosophie embrassait toutes les Sciences. Certes ce que l'on appelait Science autrefois n'avait qu'un lointain rapport avec la façon dont on les pense maintenant. Les mathématiques étaient, suivant l'usage que l'on en faisait, la philosophie que l'on choisissait, préalables à toute connaissance ou détenaient au contraire une faible valeur probatoire en rapport de la Physique. L'essentiel était qu'elles soient bien au chaud sous la coupe de mère Philosophie et qu'elles alimentent les dialogues où le mathématicien se trouvait être, selon la situation, maître du monde de la connaissance ou artisan de l'inutile. Dans chacun des deux cas, la simple connaissance de l'existence du mathématicien suffisait et il fallait laisser à ces spécialistes ou à quelques illuminés, la tâche ingrate de faire des mathématiques. Et puis vient petit à petit l'idée grandiose que l'investigation rationnelle de la nature ne pouvait se faire qu'en respectant une méthode rigoureuse et quasi-mathématique. La Philosophie devait réserver une place de choix, un espace de plus en plus grand aux mathématiques qui ne cessaient de grandir et de mûrir. Les choses commencèrent à s'améliorer nettement pour notre Mathématique et leurs représentants. L'ensemble prit d'ailleurs tellement de place qu'ils durent se séparer de la trop encombrante et lourde philosophie pour pouvoir se développer librement. La Mathesis Universalis prenait son envol. De l'enseignement des plus jeunes enfants aux grands corps d'Etat, il n'était pas d'endroit ( au moins en France ) qui ne voyait pointer le bout du nez de la Reine des Sciences. Alors les mathématiciens s'habituèrent petit à petit à parler plus forts entre eux, fiers de leur position dominante, de toutes ces choses importantes que l'on ne pouvait saisir qu'à la condition d'une pratique intensive et exigeante. Et puis vint le temps de la Grande Harmonisation, qui malgré quelques échos qui s'entendaient déjà bien forts d'une impossible puissance infinie, se fit et emporta aussi avec elle tout le flot des paroles des mathématiciens qui devaient s'incliner devant autant de rigueur et de force. Il était même de bon temps de dire que ce qui était vrai dans les mathématiques, devait aussi l'être pour leur enseignement. Alors la mathématique qui embrassait à son tour, toutes les mathématiques et les mathématiciens se mirent à réver toujours plus fort et toujours plus loin. Les mathématiciens en oublièrent d'ailleurs presque qu'il fut un temps où leur existence était quasiment décorative ou utilitaire, et que ce temps pourrait revenir très vite. Ils oublièrent aussi au passage de parler au peuple de ce que pouvait bien contenir leur science de haut vol. Mais Mère Philosophie n'était plus là pour rattraper ses marmots et l'enfant qui avait grandit devait se débrouiller seul, solitude qu'il avait d'ailleurs bien choisi. Et puis les choses commencèrent à se corser lorsqu'un certain ministre osa clamer l'inutilité pure et simple des mathématiques et presque de leur enseignement. Les mathématiciens avaient beaucoup parlé entre eux et ne s'attendaient pas à si peu de considération pour leur discipline. Puis vint la grande crise, pas une crise des fondements comme ils eurent l'habitude d'en essuyer pas mal de façon interne, mais une simple crise financière, extérieure, qui les projeta sur le devant de la scène. Ils furent accusés de tous les maux et bon nombre de procès leur fut intentés. Les mathématiques et les mathématiciens furent ébahis, car ce qu'ils prenaient pour de la grandeur, s'était transformé devant leurs yeux en décadence. Et comment lutter puisqu'ils n'avaient dit mot jusque-là sauf dans quelques cercles tellement restreints que rien ne filtrait vers l'extérieur, ils ne savaient d'ailleurs pas ce qu'était un micro ni une caméra. Comment rattraper l'étendue des dégats sans porte-voix? De l'enseignement primaire à la recherche de haut niveau, les mathématiques, déconnectées de leur sens profond, devenaient illisibles et presque inutiles à la société toute entière. Deux questions légitimes apparaissent de fait: A quoi servent les mathématiques et est-il utile de les enseigner? Si d'un point de vue interne les réponses affirmatives à ces deux questions semblent couler de source, cela est bien loin de faire l'unanimité à l'extérieur.

    L'élément le plus important est que les philosophies platoniciennes, aristotéliciennes et cartésiennes qui sont encore associées aux mathématiques ne sont plus efficaces pour répondre à ce type de questions. Elle butent sur le simple fait qu'elles n'ont pas été pensées au sein de sociétés technologiquement développées (on peut résumer en disant en gros que le développement technologique d'une société est corrélé avec sa capacité de simulation et de modélisation). Ainsi avec ce types de philosophies, il est impossible de penséer les mathématiques telles qu'elles sont et telles qu'elles devraient apparaître dans l'enseignement.

    Il semble donc urgent d'activer une philosophie sous-jacente aux mathématiques sur laquelle elles peuvent s'appuyer pour produire un discours justificateur et explicatif. Un malheur n'arrive jamais seul et non seulement les mathématiques ont été détachées de leur bases philosophiques depuis près de trois siècles mais on ne peut pas dire que la philosophie liée à la complexité du monde et aux sociétés technologiquement avancées soit en grande forme. Il manque donc le lien mais aussi le terreau.

    Il serait nécessaire que les mathématiques actuelles et leur enseignement soient associés à ce que je nommerai "la philosophie de la transmission". Le terme est suffisamment explicite et englobant pour faire sens. La transmission peut d'une part s'entendre au sens collectif ou individuel ( développement durable, générations futures, pédagogie, citoyenneté ), au sens politique ( choix décisifs ), au sens technologique ( récursivité, itération, modélisation, simulation ) ou au sens spirituel ( charité, don, action envers son prochain...). La transmission s'ancre dans l'action, la pratique et l'instant. Un développement de la philosophie de la transmission, intégrant la complexité dynamique, est devenue impérative pour solidifier l'édifice et lui permettre de s'élever à partir de racines profondes. Or force est de constater la maigreur de la littérature sur ce sujet.

    Le travail doit s'effectuer dans plusieurs champs distincts, complémentaires et inséparables.

    • Il faut modifier la philosophie sous-jacente aux mathématiques
    • Il faut modifier le discours sur les mathématiques
    • Il faut modifier modifier le discours sur l'enseignement des mathématiques

     

    • Modifier la philosophie sous-jacente aux mathématiques

    Faire évoluer et converger les philosophies qui sous-tendent les mathématiques en une philosophie de la transmission, de la pratique et de la diffusion centrée sur le moment présent et dont l'acte transcendant est le partage.

    La pensée est un acte et comme tel, elle vit dans l'instant. L'idée est sa réalisation.

    La philosophie de la transmission permet de penser le présent comme qualité potentiellement transcendante. La pratique, et la ritualisation des actes (physiques ou de pensée) redeviennent porteurs de sens en tant que balises visibles et régulières d'un chemin inconnu mais au but clairement identifié .

    Mettre le paradoxe de l'intransmissibilité au centre du questionnement philosophique.

    Replacer les mathématiques comme un élément central de la philosophie de la transmission ( rationnalité, outil, génération de problèmes philosophiques majeurs, socle des sociétés technologiquement avancées, éléments du choix et de la décision... )

    Il faut placer le récepteur, le destinataire, le lecteur, au centre de l'édifice philosophique et non pas le producteur. Ne pas le transformer en consommateur mais le penser comme agent actif et récepteur responsable d'un flux dynamique. La jouissance de l'instant se fait par mesure de son intensité et de sa qualité transmissive (interne ou externe).

     

    • Modifier le discours sur les mathématiques

    Faire évoluer le vocabulaire sur la description des mathématiques

    Elles sont utiles à la compréhension du monde et la permettent (physique, finances, interpolation, statistiques, théorie des jeux, chaos, complexité, comportements dynamiques, évolutions).

    C'est un outil indispensable aux générations futures (simulation, modélisation, extrapolation).

    Elles sont le fruit d'une synthèse universelle.

    Elles permettent de produire un discours rationnel sur les régularités et sur la complexité du monde.

    Elles permettent de parcourir de façon rationnelle un chemin inconnu.

    La pratique est la base de l'activité mathématique. La pratique des mathématiques c'est les mathématiques. On s'exerce à la démonstration, comme à toute technique mathématique.

    Repenser la place de la géométrie et de la preuve. La démonstration devient porte d'entrée dans le monde des mathématiques et non objectif final visé ( il y a beaucoup d'indécidabilité).La preuve n'est pas conclusive, elle est introductive (pour la visite de l'édifice mathématique, pas pour leur enseignement), la pratique (expérimentation) est conclusive et doit être effectuée de façon rigoureuse et sérieuse. Pour préciser, le preuve peut être trouvée sur le chemin de l'expérimentation (ou non) et le cas échéant cela laisse la place à l'expérimentation ( qui peut être celle de la preuve d'ailleurs !). C'est en ce sens que je dit que la preuve est nécessairement introductive et non terminale, c'est l'expérimentation qui l'est, comme outil de découverte d'un surplus de complexité ( si elle existe).

    La simplicité (toute relative!) se montre par la preuve (et ce qui ne veut pas dire que la preuve est simple), alors que la complexité ne se laisse attraper que par l'expérimentation.

    La compréhension n'est pas conditionnelle, c'est la pratique qui l'est.

    Modifier la dynamique de la pratique des mathématiques et la considérer d'origine intérieure se prolongeant vers l'extérieur et non le contraire (de toutes façon c'est une question de foi!).

    Il ne faut pas hésiter à avoir recours à la mise en forme de la présentation des mathématiques, au prosélytisme, rendu possible par les médias et principalement celui qui est le plus adapté aux mathématiques : le monde numérique et Internet.

     

    • Modifier le discours sur l'enseignement des mathématiques

    Donner du sens pour ceux qui ne les pratiqueront plus ou presque plus dans leur vie active et faire pratiquer ceux qui devront les utiliser et les produire de façon assez intensive

    Penser l'hétérogénéité (contenue) comme réellement positive en libérant les leviers d'action positifs et en diminuant l'idée de la figure dominante de l'enseignant pour lui affecter une figure de leader de groupe et de facilitateur de la diffusion des savoirs et des techniques. S'appuyer sur l'énergie du groupe pour diffuser les connaissances et les techniques.

    L'élève ne construit pas son savoir, il construit sa pratique (elle peut être en vue d'augmenter son savoir!) et se met en contact avec les objets de savoirs et de technique en vue de leur intériorisation.

    Modifier la figure idéale-typique du prof de maths, possédant un stock énorme de savoirs « morts », en celle de l'honnête homme cultivé qui diffuse les connaissances au plus grand nombre, permet une analyse quantitative et rationnelle du monde complexe dans lequel nous vivons.

    Réhabiliter l'élève moyen comme praticien actif et positif.

    L'informatique permet d'une part de développer la pratique expérimentale ainsi que de répondre à la demande de rigueur associée à toute discipline scientifique par l'intermédiaire de la programmation.

    Mettre non pas la construction des savoirs au centre du processus de transmission mais l'apprentissage de la rationalité des pratiques. Il faut replacer l'orthodoxie des pratiques et des rituels au centre de l'apprentissage, tout en favorisant et encourager l'émergence de la créativité.

    La pratique régulière et la production interne (intention) sont indispensables à toute personne désirant structurer son esprit, se diriger vers des études scientifiques, des filières sélectives (par les mathématiques)

    La concentration dans l'instant est un élément essentiel de la profondeur des apprentissages, elle permet un accès à la durée, place la difficulté non pas comme obstacle mais comme état de temps, elle permet de pacifier le terrain psychique, elle permet de découpler le temps de la pratique orthodoxe ( en particulier celle des mathématiques) du temps vulgaire.

    Les limites des mathématiques doivent être clairement annoncées dès les petites classes afin de ne pas idéaliser (diaboliser) cette discipline au fur et à mesure de sa pratique. Pour s'en convaincre il suffit d'en parler avec des enseignants non scientifiques.

     

    Selon moi, il reste bien sûr une dernière phase au processus : infléchir l'enseignement des mathématiques, ses buts généraux, l'évaluation, sa place dans le système global mais je laisse la tâche de le faire à ceux dont mission leur est donnée et dont c'est le métier. Le mien est d'enseigner, pas de penser (sauf à mes cours...). 

     

    Transmission Control Protocol

  • Gödel : le tsunami mathématique

    Le théorème d'Incomplétude de Gödel c'est un  peu comme un ouragan qui se forme dans l'océan mathématique. Les mathématiciens sur leur île le voient se rapprocher au loin et puis ils discutent entre eux et aussi avec les habitants de l'île voisine qui ne sont pas matheux mais philosophes. Voilà en résumé un extrait de leur longue conversation leur conversation au sujet des résultats  de Gödel:

    -C'est un ouragan, il se dirige vers nous.

    -Non, c'est vers nous qu'il vient.

    -En fait c'est une simple tempête tropicale.

    -Non c'est bien un ouragan mais il ne nous atteindra pas, c'est sur votre île qu'il ira.

    -Non jamais de la vie, vous voyez bien qu'il se dirige vers votre île et gonfle au fur et à mesure qu'il avance sans dévier.

    -Pff, tout ce bruit pour une simple tempête tropicale.

    Mais au fait qu'est qu'il a dit Gödel ?

    Il a dit en gros que si les mathématiciens voulaient s'acharner à vouloir tout démontrer ils allaient s'épuiser à la tâche parce qu'en mathématiques il existe des propositions qui peuvent être vraies et indémontrables en même temps.
    Çà a jeté un certain froid dans l'univers mathématique et puis les philosophes ont trouvé ça tellement génial qu'ils ont décidé de mettre les résultats de Gödel à toutes les sauces. Les matheux se marraient parce qu'ils savaient qu'ils ne pouvaient s'appliquer que dans le cadre très restreint des mathématiques.

    En fait les travaux de Gödel ont déstabilisé violemment le monde mathématique des années 30 qui pensait pouvoir démontrer lui-même la suprématie de sa discipline. Puis avec le temps, les mathématiciens s'en sont accomodé en intégrant dans leur vision du paysage mathématique, quelques trous qui seraient les propositions indécidables, c'est à dire dont on ne pourrait jamais savoir si elles sont vraies ou fausses.

    Mais en fait en 1994, deux mathématiciens ont commencé à montrer que l'incomplétude n'était ni une tempète tropicale, ni un ouragan mais que c'était en fait un tsunami. Les mathématiciens doivent donc réajuster une fois de plus leurs lunettes pour admirer la beauté du paysage, car ce qu'ils doivent maintenant voir devant eux n'est plus un grand nombre de propriétés démontrables avec quelques trous formés par quelques propositions indécidables isolées mais un gros trou formé par ces dernières autour duquel il y aurait quelques propositions éparses assorties de leur pénible démonstration à peine visibles à l'oeil nu.

    Et là, à mon avis, ce sont les philosophes qui vont rigoler à leur tour... ah, oui tiens au fait, puisqu'on en parle, ils sont où les philosophes ?

    Pour des compléments solides sur la question voir l'excellent article de Jean-Paul Delahaye dans le numéro de janvier 2009 de " Pour la Science" : Presque tout est indécidable!

  • Vers une philosophie de la transmission

    Le pendule de Foucault

    La période actuelle que traversent l'enseignement et la transmission des savoirs pourrait correspondre à celle du début des mathématiques où  les hommes ayant trouvé mille et une règles attendent sans le savoir, un Euclide qui leur permettra de passer à la démonstration générale et d'accéder ainsi à l'universalité de son propos.

    La rationalisation et la massification des procédés d'enseignement n'est pas très ancienne ( vers le XVIème) et le modèle du collège semble avoir été le premier, et pour l'instant le seul, vecteur de transmission de savoirs de façon organisée. Or aujourd'hui Internet, nous apporte l'ombre d'une crise profonde aussi présente dans le monde éducatif que dans le monde économique pour nous montrer que le type d'enseignement que nous promulguons depuis quelques siècles n'est certainement qu'un exemple d'un édifice plus général de transmission des savoirs et des codes de comportement. Si l'éducation familiale s'est heurtée à l'impossible transmission des connaissances, il n'en est plus de même avec la présence d'un cyber-espace, où l'internaute autonome peut très bien se passer théoriquement des murs de la classe pour construire son savoir. La cellule familiale pourrait tout autant s'approprier ces savoirs et devenir une source possible à grande échelle de leur transmission tout aussi efficace qu'un système productiviste cadencé à vitesse unique. L'état conserverait le droit d'édition des programmes officiels associés aux différents concours et diplômes qu'il distribue. Alors que reste-t-il de l'édifice répondant à la demande utopique de transmission de savoirs et de codes?  Une ruine? Le modèle du collège, qui était initialement prévu pour transmettre les valeurs religieuses et celles de la noblesse, et s'est adapté coûte que coûte, à la massification depuis le début de sa création,  semble à bout de souffle tant ses objectifs initiaux paraissent lointains et beaucoup moins lisibles aujourd'hui. A l'heure, des technologies numériques qui peinent à  trouver leur place dans ce monde qui n'était pas prévu pour elles, toute tentative de modification du système  semble être impossible ou ne répondre qu'à la seule demande implicite de massification. Mais si les critiques peuvent être nombreuses, les solutions de remplacement ne se bousculent pas. Elles me semblent en fait associées à une nécessaire "Philosophie de la transmisssion" qui  elle aussi  peine à émerger du néant.

    Alors que justement,  je recherchais sur la toile des éléments de réflexion sur les paradoxes de la transmission et sur l'existence d'une philosophie sur ce sujet, je suis tombé sur les écrits de Jean Agnès publiés dans la revue Le Portique. Je vous engage à les lire car ils pointent sur ce qui reste d'habitude caché, tu, par les partisans de telle ou telle chapelle et permettent une mise en lumière des paradoxes liés à la difficile, presque impossible, transmission.

    L’intransmissibilité est-elle une question philosophique ?

    L’internaute et le pédagogue

    L’espace de la pédagogie au temps d'Internet

    Les autres textes de Jean Agnès

     

    Les canards

  • Mathématiques et méditation

    Je cherchais depuis bien longtemps à faire un lien entre les mathématiques ( que je connais un peu ) et le zen ( que je ne connais que peu et principalement par ce que j'en ai lu ). Je viens trouver le passage d'un livre qui traite de ce sujet. Il s'agit de "Concentration et méditation" de Christmas Humphrey.
    La première partie du livre traite de la concentration, en avançant le fait qu'elle soit préalable à la possibilité de méditer.

    L'auteur définit une progression à 4 niveaux :


    1) La concentration

    2) La méditation inférieure

    3) La méditation supérieure

    4) La contemplation

    466522635_e666a2f4aa.jpg

     

    C'est dans la 3ème partie, celle concernant la méditation supérieure que l'on trouve l'extrait suivant:

    Le passage entre les étapes deux et trois est difficile à préciser. Mais, celui qui s'est élevé à ce plan s'apercevra qu'un changement subtil et cependant énorme s'est opéré en lui. Il sera désormais dans ce monde tout en n'en faisant plus partie ; il servira ce monde et en même temps en sera affranchi. En méditant, il verra qu'il a transcendé les préoccupations terrestres, que même les dénominations et les définitions ont fini par perdre leur force. Dans un tel monde, la relativité cède à la nature intrinsèque quelles que soient les apparences extérieures et le méditant se dégage de l'empire de la forme. Le karma du passé pourra encore le faire s'élancer à la poursuite des plaisirs sensuels et stériles, mais son regard intérieur aura contemplé la Vision glorieuse et seule la main du temps le tient éloigné de son héritage.
    Dans cette subdivision seront abordés les jhanas, les états de conscience dont les Ecritures bouddhiques donnent une description on ne peut plus complète, ainsi que les koan les plus ardus tant utilisés dans le bouddhisme zen. C'est également dans cette partie de l'ouvrage qu'on établira la correspondance de la méditation avec les hautes sphères du mysticisme, où la dévotion profonde s'unit à l'intellect le plus pénétrant dans la volonté de comprendre les pures abstractions ainsi que les rapports entre elles. C'est également là qu'on discernera le fonds commun des mathématiques et de la musique, de la métaphysique et du vrai mysticisme, car c'est à ce stade qu'on dépassera les limitations de la forme à jamais et qu'on percevra l'Essence de l'Esprit dans toute sa pureté.

     

    On pourra  comparer ce point de vue avec les propos de Grothendieck dans "Récoltes et Semailles". 265 occurences du mot " méditation" y sont présentes. J'ai placé quelques extraits ci-après:

    p 62 : Ce que je dis ici sur le travail mathématique est vrai également pour le travail de "méditation" (dont il sera question un peu partout dans Récoltes et Semailles). Il n’y a guère de doute pour moi que c’est là une chose qui apparaît dans tout travail de découverte, y compris dans celui de l’artiste (écrivain ou poète, disons). Les deux "versants" que je décris ici peuvent être vus également comme étant, l’un celui de l’expression et de ses exigences "techniques", l’autre celui de la réception (de perceptions et d’impressions de toutes sortes), devenant inspiration par l’effet d’une attention intense. L’un et l’autre sont présents en tout moment du travail, et il y a ce mouvement constant de "va-et-vient" entre les "temps" où l’un prédomine, et ceux où prédomine l’autre.

    p 75 : En 1976 est apparue dans ma vie une nouvelle passion, aussi forte qu’avait été jadis ma passion mathématique, et d’ailleurs proche parente de celle-ci. C’est la passion pour ce que j’ai appelé "la méditation" (puisqu’il faut bien des noms aux choses). Ce nom, comme le ferait ici tout autre nom, ne peut manquer de susciter d’innombrables malentendus. Comme en mathématique, il s’agit là d’un travail de découverte.

    p 196 : Mais qu’il s’agisse de méditation ou de mathématique, je ne songerais pas à faire mine de "travailler" quand il n’y a pas désir, quand il n’y a pas cette faim. C’est pourquoi il ne m’est pas arrivé de méditer ne serait-ce que quelques heures, ou de faire des maths ne serait-ce que quelques heures, sans y avoir appris quelque chose ; et le plus souvent (pour ne pas dire toujours) quelque chose d’imprévu et imprévisible.

    p 196 : Dans mon cas pourtant et jusqu’à présent, l’écriture a été un moyen efficace et indispensable dans la méditation. Comme dans le travail mathématique, elle est le support matériel qui fixe le rythme de la réflexion, et sert de repère et de ralliement pour une attention qui autrement a tendance chez moi à s’éparpiller aux quatre vents. Aussi, l’écriture nous donne une trace tangible du travail qui vient de se faire)
    auquel nous pouvons à tout moment nous reporter. Dans une méditation de longue haleine, il est utile souvent de pouvoir se reporter aussi aux traces écrites qui témoignent de tel moment de la méditation dans les jours précédents, voire même des années avant.

    p 197 : Pour celui qui est animé du désir de connaître, la pensée est un instrument souvent utile et efficace, voire indispensable, aussi longtemps qu’on reste conscient de ses limites, bien évidentes dans la méditation (et plus cachées dans le travail mathématique).

    p 209 : Souvent, quand je fais des maths, ou quand je fais l’amour, ou quand je médite, c’est l’enfant qui joue. Il n’est pas toujours le seul à "jouer". Mais quand il n’est pas là, il n’y a ni maths, ni amour, ni méditation. C’est pas la peine de faire semblant - et c’est rare que j’aie joué cette comédie-là.

    p 210 : Cela rappelle à mon attention que le travail mathématique, alors même qu’il se ferait dans la solitude pendant des années, n’est pas un travail purement personnel, individuel, comme l’est la méditation - du moins pas chez moi. "L’inconnu" que je poursuis dans la mathématique, pour qu’il m’attire avec une telle force, ne doit pas seulement être inconnu de moi, mais inconnu de tous.

    p 212 : Là ça allait faire un an et demi que je n’ai pas médité, à part quelques heures au mois de décembre, pour y voir clair dans une question urgente. Et ça fait un an que j’investis le plus gros de mon énergie à faire des maths. Cette "vague"-là est venue comme les autres, vagues-maths ou vagues-méditation : elles viennent sans annoncer leur venue. Ou si elles s’annoncent, je ne l’entends jamais ! Le patron garde une petite préférence pour la méditation, faut-il croire : à chaque fois la vague-méditation est déjà suivie par une vague-maths ; alors que je la voyais durer à jamais ; et la vague-maths qui (me semblait-il) était une affaire de quelques jours ou tout au plus de semaines, s’attarde et s’étend sur des mois et peut-être même, qui sait, sur des années. Mais le patron a fini par comprendre que ce n’est pas lui qui fait ces rythmes et qu’il n’a rien à gagner à vouloir les régler.

    p 215 : Pour avoir qualité de méditation, Il manquait surtout à cette réflexion Le regard sur ma propre personne et sur ma vision demoi-même, et non seulement sur ma vision du monde, sur un système d’axiomes donc où je ne figurais pas vraiment "en chair et en os". Et aussi il y manquait, le regard sur moi-même dans l’instant, au moment même de la réflexion (qui restait en deçà d’un véritable travail) ; regard qui m’aurait fait déceler aussi rien un style d’emprunt, qu’une certaine complaisance dans l’aspect littéraire de ces notes, un manque donc de spontanéité, d’authenticité. Toute insuffisante qu’elle soit, et de portée relativement limitée dans ses effets immédiats sur mes relations à autrui, cette réflexion m’apparaît pourtant comme une étape, probablement nécessaire vu le point de départ, vers le renouvellement plus profond qui devait avoir lieu deux ans plus tard. C’est alors enfin que je découvre la méditation - en découvrant ce premier fait insoupçonné : qu’il y avait des choses à découvrir sur ma propre personne - des choses qui déterminaient de façon quasiment complète le cours de ma vie et la nature de mes relations à autrui. . .

    p 221 : Cette fascination sur moi de la "méditation" a été d’une puissance considérable - aussi puissante que naguère l’attirance de "la femme", dont elle semble avoir pris la place. Si je viens d’écrire "a été", cela ne signifie pas que cette fascination soit aujourd’hui éteinte. Depuis un an que je m’investis dans les mathématiques, elle a passé seulement à l’arrière-plan.

    p 221 : En fait, au cours de chacune des quatre longues périodes de méditation par lesquelles j’ai passé (dont l’une s’est étendue sur près d’un an et demi), c’était une chose qui pour moi allait de soi que j’allais continuer sur ma lancée jusqu’à mon dernier soupir, pour sonder aussi loin que je pourrai aller les mystères de la vie et celles  de l’existence humaine.

    p 222 :Même après la méditation d’il y a deux ans et demi, où la passion mathématique a été reconnue comme une passion en effet, comme
    une chose importante dans ma vie - quand maintenant je me donne à cette passion, il reste une réserve, une réticence, ce n’est pas un don total. Je sais qu’un soi-disant "don total" serait en fait une sorte d’abdication, ce serait suivre une inertie, ce serait une fuite, non un don.
    Il n’y a aucune telle réserve en moi pour la méditation. Quand je m’y donne, je m’y donne totalement, il n’y a trace de division dans ce don. Je sais qu’en me donnant, je suis en accord complet avec moi-même et avec le monde - je suis fidèle à ma nature, "je suis le Tao". Ce don-là est bienfaisant à moi-même et à tous. Il m’ouvre à moi-même comme à autrui, en dénouant avec amour ce qui en moi reste noué.

    La méditation m’ouvre sur autrui, elle a pouvoir de dénouer ma relation à lui, alors même que l’autre resterait noué. Mais il est très rare que se présente l’occasion de communiquer avec autrui si peu que ce soit au sujet du travail de méditation, de telle ou telle chose que ce travail m’a fait connaître. Ce n’est nullement parce qu’il s’agirait de choses "trop personnelles". Pour prendre une image imparfaite, je ne peux communiquer sur des maths qui m’intéressent à un moment donné, qu’avec un mathématicien qui dispose du bagage indispensable, et qui au même moment est disposé à s’y intéresser également. Il arrive que pendant des années je sois fasciné par telles choses mathématiques, sans rencontrer (ni même chercher à rencontrer) d’autre mathématicien avec qui communiquer à leur sujet. Mais je sais bien que si j’en cherchais, j’en trouverais, et que même si je n’en trouvais pas, ce serait simple question de chance ou de conjoncture ; que les choses qui m’intéressent
    ne pourront manquer d’intéresser quelqu’un et même quelques-uns, que ce soit dans dix ans ou dans cent ans peu importe au fond. C’est cela qui donne un sens à mon travail, même si celui-ci se fait dans la solitude. S’il n’y avait d’autres mathématiciens au monde et qu’il ne doive plus y en avoir, je ne crois pas que faire des maths garderait un sens pour moi- et je soupçonne qu’il n’en va pas autrement pour tout autre mathématicien, ou tout autre "chercheur" en quoi que ce soit. Cela rejoint la constatation faite précédemment, que pour moi "l’inconnu mathématique" est ce que personne encore ne connaît - c’est une chose qui ne dépend pas de ma seule personne, mais d’une réalité collective. La mathématique est une aventure collective, se poursuivant depuis des millénaires.
    Dans le cas de la méditation, pour communiquer à son sujet, la question d’un "bagage" ne se pose pas ; pas au point où j’en suis tout au moins, et je doute qu’elle se posera jamais. La seule question est celle d’un intérêt en autrui, qui réponde à l’intérêt qui est en moi. Il s’agit donc d’une curiosité vis-à-vis de ce qui ce passe réellement en soi-même et en autrui, au-delà des façades de rigueur, qui ne cachent pas grand-chose du moment qu’on est vraiment intéressé à voir ce qu’elles recouvrent. Mais j’ai appris que les moments où dans une personne apparaît un tel intérêt, les "moments de vérité", sont rares et fugitifs. Il n’est pas rare, bien sûr, de rencontrer des personnes qui "s’intéressent à la psychologie", comme on dit, qui ont lu du Freud et du Jung et bien d’autres, et qui ne demandent pas mieux que d’avoir des "discussions intéressantes". Ils ont ce bagage qu’ils transportent avec eux, plus ou moins lourd ou léger, ce qu’on appelle une "culture". Il fait partiede l’image qu’ils ont d’eux même, et renforce cette image, qu’ils se gardent d’examiner jamais, exactement comme tel autre qui s’intéresse aux maths, aux soucoupes volantes ou à la pêche à la ligne. Ce n’est pas de ce genre de "bagage", ni de ce genre "d’intérêt", que j’ai voulu parler tantôt - alors que les mêmes mots ici désignent des choses de nature différente.
    Pour le dire autrement : la méditation est une aventure solitaire. Sa nature est d’être solitaire. Non seulement le travail de la méditation est un travail solitaire - je pense que cela est vrai de tout travail de découverte, même quand il s’insère dans un travail collectif. Mais la connaissance qui naît du travail de méditation est une connaissance "solitaire", une connaissance qui ne peut être partagée et encore moins "communiquée" ; ou si elle peut être partagée, c’est seulement en de rares instants. C’est un travail, une connaissance qui vont à contre-courant des consensus les plus invétérés, ils inquiètent tous et chacun. Cette connaissance certes s’exprime simplement, par des mots simples et limpides. Quand je me l’exprime, j’apprends en l’exprimant, car l’expression même fait partie d’un travail, porté par un intérêt intense. Mais ces mêmes mots simples et  limpides sont impuissants à communiquer un sens à autrui, quand ils se heurtent aux portes closes de l’indifférence ou de la peur. Même le langage du rêve, d’une toute autre force et aux ressources infinies, renouvelésans cesse par un Rêveur infatigable et bienveillant, n’arrive à franchir ces portes-là. . .
    Il n’y a de méditation qui ne soit solitaire. S’il y a l’ombre d’un souci d’une approbation par quiconque, d’une confirmation, d’un encouragement, il n’y a travail de méditation ni découverte de soi. La même chose est vraie, dira-t-on, de tout véritable travail de découverte, au moment même du travail. Certes. Mais en dehors du travail proprement dit, l’approbation par autrui, que ce soit un proche, ou un collègue, ou tout un milieu dont on fait partie, cette approbation est importante pour le sens de ce travail dans la vie de celui gui s’y donne.
    Cette approbation, cet encouragement sont parmi les plus puissants incentifs, qui font que le "patron" (pour reprendre cette image) donne le feu vert sans réserve pour que le môme s’en donne à coeur joie. Ce sont eux surtout qui déterminent l’investissement du patron. Il n’en a pas été autrement dans mon propre investissement dans la mathématique, encouragé par la bienveillance, la chaleur et la confiance de personnes comme Cartan, Schwartz, Dieudonné, Godement, et d’autres après eux. Pour le travail de méditation par contre, il n’y a nul tel incentif. C’est une passion du môme-ouvrier que le patron est au fond gentil de tolérer peu ou prou, car elle ne "rapporte" rien. Elle porte des fruits, certes, mais ce ne sont pas ceux auxquels un patron aspire. Quand il ne se berne pas lui-même à ce sujet, il est clair que ce n’est pas dans la méditation qu’il va investir, le patron est de nature grégaire !
    Seul l’enfant par nature est solitaire.