Ok

En poursuivant votre navigation sur ce site, vous acceptez l'utilisation de cookies. Ces derniers assurent le bon fonctionnement de nos services. En savoir plus.

Mathématiques - Page 34

  • Office 2010 disponible pour les enseignants

    Microsoft met à disposition des enseignants la suite Office (dont Word, Excel, PowerPoint et OneNote) pour la somme de 8 € à l'adresse suivante :
    http://www.microsoft.com/france/education/prim-sec/enseignants/office/home.aspx

    Le logiciel Maths 4.0 est gratuit et disponible à l'adresse suivante:
    http://www.microsoft.com/downloads/fr-fr/details.aspx?FamilyID=9caca722-5235-401c-8d3f-9e242b794c3a

    Toujours pour les mathématiques et Word, il est possible d'installer à l'intérieur de Word le plugin Maths à l'adresse suivante :
    http://www.microsoft.com/downloads/fr-fr/details.aspx?FamilyID=ca620c50-1a56-49d2-90bd-b2e505b3bf09

    Pour celles et ceux qui disposent d'un compte Google ou souhaitent en créer un, Google a mis en ligne un plugin qui permet de faire des sauvegardes automatiques des documents Word vers son compte Google. C'est très pratique: http://www.presse-citron.net/google-cloud-connect-pour-microsoft-office-le-plugin-qui-envoie-office-dans-le-nuage

     

    A noter:

    La synchronisation des sauvegardes des fichiers dans un espace SkyDrive (Hotmail) est très intéressante et elle permet entre autres d'utiliser de façon très efficace OneNote en classe sur un portable et chez soi.

    On peut ainsi transporter sur une même page, dans un classeur bien rangé, un cours composite constitué de textes, d'images, de sons, de fichiers et même d'écriture manuscrite si l'on dispose d'un tablet PC. On peut  transporter les cours pour toutes les classes dans la plus grande simplicité. Le copier-coller peut être utilisé sans modération. La page peut se convertir en format PDF pour être lisible par tous (seulement les parties "PDFiables"!, il faudra par exemple joindre les fichiers, ils ne seront pas attachés au PDF...).

     

    OneNote.png

     

     

     

  • Russell, Carroll, Galton, Poincaré et les autres en milliDarwin

    Imaginons que l'on veuille se donner une unité de mesure de la fréquence d'apparition du couple "Prénom Nom" d'un scientifique (dans cet ordre avec les majuscules initiales) sur la période 1800 à 2000. On pourrait par exemple choisir le milliDarwin, c'est à dire que 1 milliDarwin signifirait que le nom apparait mille fois moins que celui de Darwin dans les publications ou plutôt dans la base de données formée par les mots des 15 millions d'ouvrages numérisés par Google.

    C'est l'idée qu'a eu un étudiant de Harvard: John Bohannon et qui a mené le projet de classer les scientifiques, par fréquence d'apparition de leur nom, dans cette gigantesque base de données, baptisé "The science hall of fame".

    Avant la lecture de ce classemeBertrand_Russell_1950.jpgnt, j'aurai imaginé de façon assez naturelle que Darwin aurait été le premier et Einstein le second mais un invité logicien, mathématicien, philosophe, homme politique, prix Nobel s'est invité en première place: c'est Bertrand Russell, que certainement le grand public ne connait pas ou peu, en tout cas beaucoup moins qu'Einstein et Darwin. Il est à 1500 milliDarwin, c'est à dire qu'il apparait 50% de fois plus que Darwin, son successeur.

    On retrouvera Bertrand Russel en BD dans l'excellent Logicomix, comme narrateur. 

    Non loin de lui se retrouve à la quatrième place, Lewis Carroll, l'auteur d'Alice au pays des merveilles, plus connu comme écrivain que comme logicien.

    Francis Galton, est bien connu pour sa planche et fait bonne figure à la 12ème place.

    Henri Poincaré, comptabilise 108 milliDarwins.

    L'idée de ce billet provient de l'éditorial de l'excellent "La Recherche" de Mars 2011 écrit par Aline Richard et c'est vraiment une excellente idée!

  • Progresser en maths avec Frédéric Laroche et Activités MATHS

    titre_4.jpgDepuis qu'est né le livre scolaire de mathématiques au début du XVIIIème siècle, celui-ci n'a cessé d'évoluer pour prendre des formes différentes et répondre à des objectifs variés en fonction des besoins personnels ainsi que des politiques en vigueur. Des noms célèbres tels que par exemple, Clairaut ou Bézout, y ont apporté leur contribution et justifié leur démarche en les inscrivant dans les priorités du moment.

    Les temps ont changé. De nouveaux environnements, en particulier numériques, sont apparus, mais les besoins principaux sont toujours exprimés dans des termes très similaires: permettre à l'élève de parcourir une partie des mathématiques, en ne s'y perdant pas,  si possible de façon autonome et en augmentant ses compétences.

    Ce sont ces objectifs que s'est fixé Frédéric Laroche en publiant un ouvrage papier, l'inscrivant ainsi dans une certaine tradition, adapté aux récents programmes de seconde, introduisant l'usage d'outils logiciels et la pratique de l'algorithmique, de la logique, tout  en faisant référence aux tests internationaux. Il tire aussi bénéfice de la publication en ligne (principalement pour les corrections et les fiches vierges de restitution du cours. Le livre prend plus la forme d'un cahier d'activités que d'un livre de cours. L'élève peut d'ailleurs,  au moins partiellement, y placer des éléments de réponses. Les cinq parties formant l'essentiel du corpus de la classe de seconde (fonctions affines/droites, géométrie, calculs, fonctions, probabilités et statistiques) sont construits sur le même schéma pédagogique:

    • Une fiche vierge permettant d'y reporter les éléments principaux à connaître. Le cours n'est pas fourni mais il est demandé à l'élève d'en retrouver l'essentiel.
    • Des applications directes du cours.
    • Des exercices intermédiaires.
    • Des exercices avec prise d'initiative, pour réfléchir et aller plus loin.

    On retrouvera ces 3 "moments" pédagogiques incontournables: les processus de base, les méthodes et la résolution de problèmes, dans le document "Apprendre à apprendre" que j'ai publié. 

    Le reste du cahier est composé:

    • de la  partie "Algorithmique et calculatrice" qui permet de mettre "en pratique" les mathématiques.
    • de références aux test internationaux avec des énoncés en langue anglaise.
    • de la partie "Pourcentages, problèmes et raisonnement" qui permet de faire un tour d'horizon avec des difficultés variées.
    • d'une partie logique qui permet de travailler ce domaine délicat qui s'est absenté pendant de nombreuses années des priorités scolaires.
    • de la dernière partie qui est consacrée à des activités nécessitant le logiciel GeoGebra.

    Je tiens aussi à signaler que le cahier n'est pas dénué d'humour comme en témoignent les dessins de Florence Bleuse.

     

    breuse,

     

    On trouvera ICI un extrait du cahier d'activités et les corrections des exercices à cette page.

    Pour savoir si vous êtes en forme, je vous propose un petit problème de robinets que l'on trouvera page 97:

    Lorsque je fais couler l'eau chaude je mets 30 mns pour remplir la baignoire. Lorsque je fais couler l'eau froide je mets 20 mns. Combien de temps mets-je avec les deux robinets ouverts simultanément?

    Et je ne veux pas voir de (30+20)/2=25 mns ! Deux robinets ouverts ne mettent pas plus de temps à remplir une baignoire qu'un seul des deux.


  • Quel est le losange de côté donné et d'aire maximale? Réponse avec Casyopée

    J'aime beaucoup faire modéliser cette situation aux élèves qui éprouvent déjà d'énormes difficultés pour créer un losange "articulé" sur GeoGebra si l'on ne leur donne aucune indication, non pas sur le fonctionnement du logiciel, qu'ils connaissent pour la plupart, mais sur la façon de s'y prendre, de concevoir le  versant "dynamique". La démonstration manuelle en devient presque une libération lorsque l'on revient sur un chemin difficile mais mieux balisé.

    J'ai traité cet exercice avec le logiciel Casyopée qui m'impressionne. Les résultats algébriques sont découverts au fur et à mesure de l'avancée de l'exercice. Le logiciel permet de plus de réinvestir des stratégies de base. Il peut y avoir pour ce type de recherche une disparition presque complète de l'énoncé, l'élève arrivant à des résultats qu'il pourra (devra?) démontrer ultérieurement. Je vous laisse juge en parcourant l'animation suivante que vous pourrez retrouver directement dans votre navigateur ICI.

     

  • Casyopée, un logiciel formidable pour naviguer entre géométrie, fonctions et calcul formel

    Casyopée est un logiciel qui termine son développement et qui dispose dès maintenant d'une version stable. Il utilise le logiciel Maxima pour le noyau de calcul formel et offre parfois des menus qui ne sont pas très éloignés de ceux de GeoGebra. Il  a été conçu et créé par une petite équipe dont la base est constituée de trois personnes:

    • Jean-baptiste Lagrange, enseignant-chercheur à l’Université de Reims, membre du LDAR (Laboratoire de Didactique André Revuz, Université Paris Diderot),
    • Bernard Le Feuvre, professeur au lycée Cassin de Montfort (Ille et Vilaine),
    • Xavier Meyrier, professeur au lycée Maupertuis de Saint Malo (Ille et Vilaine).

    Le logiciel est libre et gratuit et pour se rendre compte des possibilités incroyables qu'il offre, il suffit de suivre l'excellent tutoriel pas à pas. Un wiki dispose déjà de quelques activités préparées pour les élèves.

    Je présente ici deux brèves vidéos non exhaustives de présentation des possibilités du logiciel:

    On pourra les visualiser directement dans le navigateur ICI et ICI.

     

    Calcul formel et bloc-notes:

     

    Géométrie, fonctions, étude de signe et de variation:

     

    Pour compléter:

    Casyopée conviviable sur SésaBlog