Ok

En poursuivant votre navigation sur ce site, vous acceptez l'utilisation de cookies. Ces derniers assurent le bon fonctionnement de nos services. En savoir plus.

Représentations

  • Faire entrer la terre dans une balle de ping-pong: une transformation "lisse et fractale"

    unnamed.jpg

    Un globe terrestre isométrique

    vignette_reverseColor_globalView2.png

    vignette_072_04.png

    vignette_rover6_fond3.png

    Capture.JPG

    Crédits des images et vidéos : E. Bartzos, V. Borrelli, R. Denis, F. Lazarus, D. Rohmer, B. Thibert

     

    Dans les années 1950, Nicolas Kuiper et le prix Nobel John Nash ont démontré l’existence d’une vaste classe d’objets mathématiques paradoxaux tels que des tores plats en 3D ou des sphères réduites, sans pouvoir toutefois les visualiser. Une équipe de mathématiciens et d’informaticiens du CNRS, de l’Université Grenoble Alpes et de l’Université Claude Bernard Lyon 11, a réussi à construire et représenter visuellement une sphère réduite, cinq ans après avoir obtenu la première image d’un tore plat en 3D2. Les sphères, connues pour être rigides, ne peuvent pas être déformées isométriquement3, c'est à dire en préservant les longueurs des courbes, avec une régularité de classe C2. En se basant sur la théorie mathématique de l’intégration convexe4, les chercheurs sont parvenus à placer une sphère à l'intérieur d'une boule de rayon arbitrairement petit. Si l'on assimile la surface de la Terre à une sphère ronde, cette théorie permet de réduire son diamètre à celui d'un modèle réduit de globe terrestre ou d'une balle ping-pong tout en préservant les distances géodésiques5. La surface obtenue, très déformée, se compose de deux calottes sphériques, parfaitement lisses, connectées par une bande équatoriale fortement déformée. Les chercheurs montrent que ce changement de structure géométrique est similaire à celui observé lorsqu'on relie une courbe de von Koch à un segment de droite (voir figure 3). Ces résultats ouvrent des perspectives inédites en mathématiques appliquées, notamment pour la résolution de certaines équations aux dérivées partielles. Les étonnantes propriétés des fractales lisses pourraient également jouer un rôle central dans l'analyse de la géométrie des formes. Leurs résultats ont été publiés dans la revue Foundations of Computational Mathematics, le 6 juillet 2017.

    Lire la suite

  • Un défi de taille pour l'éducation

    Un défi essentiel pour l'éducation est donc de prendre en compte la manière dont les gens réussissent à contourner tout besoin d'encodage formel des situations en se fiant à ce que leur disent leurs catégories familières, construites pendant des années d'interactions quotidiennes avec le monde qui les entoure. Si tout enseignant a parfaitement conscience que l'"habillage" d'un énoncé peut modifier profondément sa difficulté, le défi de faire de l'habillage un levier d'apprentissage doit encore être relevé. L'enjeu est de taille, et le défi loin d'être simple.

    Cette citation est extraite de l'excellent livre L'Analogie Coeur de la pensée de Douglas Hofstadter et d'Emmanuel Sander.

    Elle conclut en page 523, un paragraphe qui aborde l'énoncé de deux problèmes dont les opérations et le résultat sont identiques. Seulement le premier est résolu par presque tout le monde avec trois opérations, alors que le second en appelle généralement une seule. Les auteurs y voient une différence d'encodage de la situation qui aboutit in fine à une différence sensible de traitement.

    Testez par vous-même en résolvant les deux problèmes suivants:

    Premier problème:

    Laurent achète une trousse à 7 € et un classeur. Il paie 15 €. Jean achète un classeur et une équerre. Il paie 3 € de moins que Laurent. Combien coûte l'équerre?

     

    Second problème:

    Laurence a suivi des cours de danse pendant 7 ans et s'est arrêtée à 15 ans. Jeanne a commencé au même âge que Laurence et s'est arrêtée 3 ans plus tôt. Combien de temps Jeanne a-t-elle suivi ses cours de danse?

     

    Le schéma pour le problème des achats est naturellement associé à un diagramme de Venn. Il incite à calculer le prix du classeur, achat commun aux deux, avant de répondre à la question posée.

    Le schéma pour le problème de la danse est plutôt un axe temporel dont l'origine serait la date de début des cours. Il suffit donc de s'imaginer la différence des durées des deux cours pour répondre à la question.

    La structure commune serait celle de deux rectangles de même base (correspondant à l'origine des prix ou des âges), superposés et de hauteurs différentes, dont une partie serait commune (le prix du classeur ou l'âge auquel Jeanne (et Laurence) ont commencé à faire de la danse. 

    Les deux problèmes peuvent être résolus avec la même opération 7-3. Il est donc faux de penser que la difficulté d'un problème est celle de la difficulté du calcul qu'il mobilise. Elle est en partie due à l'encodage de la situation qui impacte directement sur la résolution du problème.

  • Réflexion à voix haute sur les réseaux personnels et autres bousculements pédagogico-sociétaux

    Cette semaine, j'affirmais qu'il était préférable d'utiliser le terme  de réseaux personnels, en ce qui concerne la communication numérique des jeunes, car elle est essentiellement construite autour de l'individualité, plutôt que le terme de réseaux sociaux. Ces réseaux sont utilisés par pas moins de 1 milliard et demi d'individus et de 96% des jeunes âgés de 18 à 24 ans. 

    On peut donc poser la question d'une nouvelle définition, à la lumière de l'usage répété de ces réseaux depuis le plus jeune âge, de ce que l'adolescent peut qualifier aujourd'hui de "personnel" et de "non personnel". 

    Lire la suite

  • Les modèles mathématiques sont-ils à suivre?

    C'est en quelque sorte la problématique du billet précédent qui se trouve rattrapée par celle qui va suivre: l'histoire du coefficient multiplicateur...

    Citons l'introduction du rapport:

    This paper investigates the  relation between growth forecast errors and planned fiscal consolidation during the crisis. We find that, in advanced economies, stronger planned fiscal consolidation has been associated with lower growth than expected, with the relation being particularly strong, both statistically and economically, early in the crisis. A natural interpretation is that fiscal multipliers were substantially higher than implicitly assumed by forecasters. The weaker relation in more recent years may reflect in part learning by forecasters and in part smaller multipliers than in the early years of the crisis. 

    Tous les problèmes ne viennent peut-être pas de là mais enfin ç'est génant!