Ok

En poursuivant votre navigation sur ce site, vous acceptez l'utilisation de cookies. Ces derniers assurent le bon fonctionnement de nos services. En savoir plus.

Inclassables M@thématiqu€s - Page 234

  • Le séquencement du génome mathématique : la preuve formelle

    Comment les mathématiciens prouvent-t-il un théorème ?

    Lorsqu'ils le prouvent d'une façon traditionnelle, ils présentent les arguments les uns à la suite des autres, comme un récit. Ils s'appuient sur des résultats précédemment démontrés ( par eux ou par d'autres), ils cachent les détails dont ils sont certains que les experts qui les liront n'auront pas besoin pour les comprendre, ils prennent des raccourcis pour rendre la lecture moins ennuyeuse. 
    La validité des arguments avancés est accordée après un examen minitieux par d'autres mathématiciens de la longue ( très longue parfois ) preuve ou au cours de discussions informelles, lors de séminaires, de cours ou après publication dans des revues spécialisées.
    Lorsque ces experts parviennent au coeur de la démonstration, ils affinent la lecture et généralement les erreurs qui ont pu se glisser dans la démonstration sont trouvées. Cependant l'histoire des mathématiques n'est pas exempte d'exemple où il a été mis un temps très important pour que la communauté mathématique découvre une erreur ou un résultat faux. De plus, dans quelques cas récents, la lecture des preuves a été particulièrement longue et compliquée, d'autant plus que maintenant de plus en plus de preuves utilisent du code informatique.

    Comment les mathématiciens peuvent-ils être sûrs que de telles preuves sont fiables ?

    De façon habituelle, les mathématiciens, s'ils ne savent pas résoudre un problème, le ramènent à un problème qu'ils savent résoudre. S'ils ne peuvent plus faire de démonstration à la main, il suffit qu'ils fassent faire à l'ordinateur ce qu'ils faisaient usuellement à la main. Mathématiciens et informaticiens  ont donc commencé à développer le vaste champ de la preuve formelle. La preuve formelle nécessite la vérification de chaque inférence à partir des axiomes de départ. Si les mathématiciens ne produisaient auparavant aucune preuve dans un langage formel, c'est qu'il aurait été impossible de la faire lire par la communauté mathématique, mais maintenant qu'un ordinateur peut lire et valider une preuve, il risque d'en être autrement. Les avancées dans la preuve formelle sont telles qu'il est maintenant possible de l'utiliser pour des tâches difficiles.

    Mais jusqu'où iront-ils ?

    Si les ordinateurs ( aidés par les mathématiciens et les informaticiens ! ) sont maintenant capables de se lancer dans les démonstrations, ils sont aussi en mesure de se lancer dans l'exploration des mathématiques elles-mêmes et d'émettre des conjectures ( hypothèses pour les autres disciplines). On peut ainsi les laisser chercher quelques relations qui n'auraient pas été vues par l'oeil du mathématicien. Les mathématiciens peuvent aussi se lancer dans l'observation des ordinateurs qui parcourent les mathématiques et apprendre ainsi de nouvelles choses. Il s'agirait d'un changement profond dans la façon de concevoir les mathématiques et de les faire. Un rêve serait d'ailleurs de voir les ordinateurs en mesure de valider toutes les preuves des théorèmes fondamentaux, activité qui s'apparenterait au séquencement du génome mathématique.

    La source en anglais Science Daily

     

    L'INFORMATIQUE: UN METIER D'AVENIR ! - THE COMPUTING: A PROMISING FIELD !

    Un mathématicien post-moderne

     

  • Un éditeur d'équation Latex en ligne

    Il s'agit de LaTex Equation for The Internet

    éditeur latex en ligne.jpg

     

    Il est possible d'obtenir une image PNG ou GIF, un Fichier PDF ou SWF.

    Je ne parviens pas à transporter directement le résultat sur mon blog sans conversion ni avec le code fourni.

    Voilà le résultat format JPG du code LaTex tapé :

    gif.latex.jpg
    Aides formules Tex : ICI

    Un fichier PDF des symboles mathématiques : ICI
    Ajout du 3/11/08

    Pas de problème d'embarquement du code sur un blog Blogger comme le montre l'exemple suivant ( alphabet grec )
    Et pour info : Il est possible de créer des images de formules courantes de mathématiques avec Prettyprint sans utiliser Latex ( voir ma très courte note ).

    Ajout du 9/11/08


    J'ai découvert un éditeur Latex qu'il est possible d'embarquer directement sur un blog : Sitmo
  • Le théorème

    Un théorème à la conclusion inattendue...

  • C'est l'histoire d'un garçon qui rencontre une fille qui fait des maths

    Lancez la vidéo ICI, c'est tout mignon, la musique est adorable et s'il y a un traducteur qui passe par là !

    C'est en fait la vidéo de présentation corresondant à deux livres japonais :

    "Mathematical Girls"

    A Boy Meets Girls and Mathematics.

    Hiroshi Yuki

    Story: "I" am a high school student, who love mathematics. "I" meet beautiful girls in the high school. "I" and the girls enjoy not only the high school life, but also solving math problems! 

    "Mathematical Girls" books show the beauty of mathematics, the excitement of challenging hard problems, and happiness of discussing with friends. Beautifully typeset with LaTeX and the Euler Font. Suitable from junior high students to mathematicians.

     

     

  • Les graphiques : un succès incontestable des mathématiques

    Le site Swivel ne regroupe pas moins d'environ  1 700 000 graphiques. La lecture d'un graphique n'a pas toujours été possible, il a fallu créer ce concept, qui s'est avéré d'ailleurs être une remarquable idée marketing tant sa diffusion fut généralisée.

    Au hasard de mes recherches sur ce site j'ai pu trouver les quelques graphiques suivants :

    Wine and Violent Crime

     

     

    Caffeine from all these sources (mg per day) by Country

    Total math literacy and Female math literacy by Country