Ok

En poursuivant votre navigation sur ce site, vous acceptez l'utilisation de cookies. Ces derniers assurent le bon fonctionnement de nos services. En savoir plus.

Inclassables M@thématiqu€s - Page 236

  • 226 ans de la vie d'un glacier simulés

    GlacierRhone.jpegUne simulation numérique montre le glacier du Rhône tel qu'il était en 1874 et tel qu'il sera probablement en 2100. Jamais une telle démarche n'a porté sur une si longue période et n'a pris en compte des données et modèles aussi complexes. Fruit d'une collaboration entre les deux Ecoles polytechniques fédérales, ces travaux vont servir à tous les acteurs concernés par l'état des glaciers.

    L'article complet de l'EPFL : ICI

    La page de Guillaume Jouvet avec les  animations vidéos: ICI

    wrh2008SC2.thumb.jpg

    wrh2100SC2.thumb.jpg
  • Interview de Stéphane Jaffard, président de la Société Mathématique de France sur la modélisation financière

    Y a-t-il un risque-t-il que la crise ( financière ) donne une mauvaise image de votre ( profession ?) voire accroisse le fossé entre les mathématiciens et le grand public?

    Il y a effectivement un risque que le public tire la conclusion : c'est la faute aux matheux. Cela dépendra en partie de la présentation que les media donneront. La balle est aussi dans le camp des mathématiciens: nous devons arriver à plus communiquer, à montrer au grand public les autres réalisations phares des mathématiques, le nombre de domaines scientifiques avec lesquels elles interagissent et dans lesquels elles ont apporté une contribution indispensable. C'est d'ailleurs l'une des préoccupations majeures de la Société Mathématique de France aujourd'hui.

    L'intégralité de l'article du Figaro sur la modélisation mathématique dans le domaine de la finance : ICI

    Je relève pour ma part que l'une des préoccupations majeures de la SMF est la vulgarisation auprès du grand public. Il y a un peu de travail pour dynamiser  l'accueil Grand public sur le site de la SMF :

     

    smf.jpg

     

  • Mes premiers pas avec Context Free

    spirale context free.jpg


    Je ne suis pas mécontent pour un début !

    Voilà le code toujours minimaliste permettant de réaliser cette figure avec Context Free Art qui utilise la récursivité de façon très naturelle:

    startshape BELLESPIRALE

    background{b -1}

    rule SPIRALE {
    ## RECURSION ##
    SPIRAL { x 0 y 3 }
    }
    rule SPIRAL {
    SHAPES { size 1 }
    SPIRAL { y 0.25
    rotate -3
    size 0.995}

    }

    rule SHAPES {
    SQUARE {}
    CIRCLE {b 0.3}
    TRIANGLE {b 0.5}
    TRIANGLE {r 60 b 0.7}
    }

    rule BELLESPIRALE{

    6*{r 60 } SPIRALE {hue 300 sat 0.5 b 0.2 }
    12*{r 30 } SPIRALE { hue 150 sat 1 b 0.1 s 0.5 }
    }

     

    Article précédent sur Context Free Art

  • Les maths votent Obama !

    Obama_Portrait_2006.jpgA quoi bon faire des élections si les modèles mathématiques prédisent tout. Etrange monde que celui dans lequel nous vivons qui créé à force de modélisation une seconde terre virtuelle ( et pourtant bien réélle ) mais modélisée mathématiquement. Des cracks financiers, sous-estimés à cause de l'inutilisation de modèles trop complexes, en passant par les divers scénarios de modification climatique, les opérations chirurgicales qui ne nécessiteront plus d'intervention humaine, jusqu'aux élections américaines, les modèles mathématiques sont partout. Ils permettent dans un cas de se déplacer avec une très grande précision dans la géométrie complexe du corps humain sans altérer les parois, de se projetter à la surface de la terre dans cent ans, de prévoir l'efficacité de nouveaux médicaments sur une maladie ou l'impact d'une campagne de vaccination sur le taux de cancer.


    Ici, un modèle mathématique remplace le vote de millions d'américains. Ce modèle qui a préditl e gagnant des élections américaines six fois de suite vote cette année pour Obama. Il résume presque le vote de l'Amérique toute entière à une simple formalité inutile et réduit l'espace politique à sa modélisation numérique.

    Le modèle du professeur Lichtman, élaboré en collaboration avec un mathématicien russe, Volodia Keilis-Borok, est construit autour de 13 variables, appelées « clés ». Ces dernières ont été déterminées à partir des résultats obtenus aux présidentielles de 1860 à 1980.

    Lichtman ironise même en affirmant :  « Les démocrates auraient pu tirer au hasard un nom d'un annuaire téléphonique et gagner la présidentielle cette année ». Extrait de l'article de Yahoo News.


    La modélisation s'infiltre dans tous les domaines, et cela ne peut que nous faire réfléchir de façon profonde sur la nature de notre société, car ici il ne s'agit plus seulement de sondages, mais de modèles autonomes permettant une prédiction alors que le sondage n'est quant à lui qu'une photographie à un instant donné. L'interprétation d'un sondage est d'autant plus aléatoire qu'elle est éloignée du moment du vote réel . Un modèle est beaucoup plus indépendant et s'il demande certainement quelques données d'ambiance, il ne se réduit pas à leur seule interprétation. Des variables principales, autres que les résultat d'un sondage avant les élections, ont été dégagées. Ce sont principalement de leur qualité, de leur indépandance et de la mécanique mathématique les reliant que dépendra la fiabilité d'un modèle.

    Mais un modèle , ça ne suffit pas, me direz-vous, pour pouvoir conclure. Qu'à celà ne tienne, puisque les principaux les modèles sont passés en revue dans cet article en Anglais, comme dans le cas du réchauffement climatique où plusieurs moèles et scénarios sont étudiés.

    La réponse est sans appel : 6 des 9 principaux modèles donnent Obama gagnant ! Et chose surprenante le modèle de Litchman -Volodia Keilis-Borok dont il est question dans l'article précédemment cité, n'apparait pas dans la liste. Il y aurait donc au moins 10 modèles ! Le modèle de Klarner prévoit même la composition de la chambre des députés et du Sénat.

    Serions-nous donc dans un nouveau monde où l'on attend avec impatience que les faits réels confirment ou infirment les prédictions des modèles? Une catastrophe viendrait alors avec un fait réel qui contredirait les prédictions et donc la stabilité des modèles utilisés. La référence dans ce cas ne serait plus la réalité ( y compris sociale et politique ) mais sa modélisation.

    Si cela vous inspire quelques commentaires.

  • Le procès du hasard

    Souvenez-vous, il y a quelques temps de cela, un ingénieur retraité annonçait la chose suivante: les billets de grattage distribués par la Française des Jeux ne sont pas répartis au hasard puisque :

    "Selon lui, dans chaque carnet de tickets, qui ont une valeur totale de 150 euros, il y a un tiers de petits lots (de 1 à 10 euros) afin de maintenir l’addiction des joueurs, les deux tiers restant étant perdants. Et quand sort un lot «significatif», supérieur à 20 euros, il n’y en a qu’un seul. Ce qui signifie que les joueurs qui acquerront un billet dans la fin du carnet n’ont plus aucune chance de gagner un gros lot. " ( Extrait de l'article de Libération.fr : le cauchemar de la Français des Jeux).

    Robert Riblet, qui a accusé la Française des Jeux de "tricherie", est poursuivi par cette dernière pour "diffamation".

    Mais alors y a-t-il ou non tricherie ?

    Justice

    Ce n'est pas à moi de répondre juridiquement à la question, ni d'établir si les procédures d'impression  et de répartition des billets dans chaque carnet, étaient suffisamment précises et si la communication laissant croire à la répartition "au hasard" était clairement définie par cette société pour qu'il n'y ait pas de "manipulation du hasard" possible par des tiers, ce qui serait rendu possible par le type de répartition annoncé par M. Riblet.

    Mais qu'en est-il d'une répartition mathématique des nombres au hasard ?

    Il suffit de faire une simulation numérique.

    Utilisons un générateur de nombres aléatoires, celui d'Excel par exemple, dont il semble qu'il produise  des listes de nombres au hasard de très bonne qualité. Je vais lui faire établir 20 séries verticales de 150 nombres de 1 à 150 pris au hasard, chacun pouvant être choisi aucune , une ou plusieurs fois.

    On pourra supposer qu'un carnet de ticket est composé de 150 tickets et que c'est le 1 qui gagne le gros lot. A-t-on mathématiquement , lorsque l'on distribue les nombres au hasard, une équi-répartition des tickets gagnants ( des 1 ) ? Où sont-ils ?

    Il suffit pour cela de recopier dans Excel la formule =ENT(ALEA.ENTRE.BORNES(1;150))

    En fait, toute personne connaissant un tant soi-peu "les règles du hasard" ( c'est peut-être paradoxal de parler de règles du hasard mais il en possède qui lui sont propres ), sait qu'une répartition homogène des tickets gagnants est impossible si ceux-ci sont répartis de façon aléatoire.

    L'exemple suivant, que l'on peut reproduire à l'infini le montre. Prenons le 1 pour chiffre gagnant. Les séries verticales sont  composées de 150 chiffres choisis au hasard entre 1 et 150. Il n'y a pas 20 "tickets gagnants" ( le 1 en fait ) répartis chacun dans chaque colonne. Il y en a  dans cette série seulement 14 dont on voit que chaque colonne en contient de 0, 1, 2 ou 3. Dans les prochaines séries, il y aurait peut-être plus de tickets gagnants, de telle façon qu'au bout d'un très grand nombre de tirages, il y ait  quasiement autant de tickets gagnants ( les 1 ) que de tirages de 150 chiffres. Mathématiquement , la fréquence ( statistique ) de sortie du 1 converge inexorablement vers la probabilité ( théorique ) associée à son tirage qui est de 1/150. En pratique, on ne trouve cependant pas un "1" tous les 150 chiffres sortis. Il y a des séries de 150 chiffres sans aucun "1", certaines avec un "1", d'autres avec 2 ou 3 "1".

    Dans l'exemple suivant de 20 séries de 150 nombres on a :

    12 séries sans ticket gagnant

    3 séries avec 1 ticket gagnant

    4 séries avec 2 tickets gagnants

    1 série avec 3 tickets gagnants.

    On peut légitimement se demander si ce type de hasard brut est "plus acceptable" et  que celui décrit par M. Riblet. Dans tous les cas, il possède un avantage considérable sur une autre répartition. Il est absolument imprévisible. Ainsi on constate, par exemple, qu'au milieu des tirages, 4 séries successives de 150 nombres chacunes ne contiennent aucun ticket gagnant et que la série "Royale" avec 3 tickets gagnants ne se situe pas après, mais avant, ces quatre séries cauchemardesques, qui pourraient, comble de malchance, être livrée à la même civette!

     


    Alors, attendons avec impatience, fin novembre, le verdict de ce procès du hasard, pour connaître la définition juridique du hasard puisqu'il semble que la Française des Jeux ne soit pas en accord avec sa seule définition mathématique.