Ok

En poursuivant votre navigation sur ce site, vous acceptez l'utilisation de cookies. Ces derniers assurent le bon fonctionnement de nos services. En savoir plus.

Paradoxes, limitations,erreurs - Page 9

  • Des p'tits problèmes de coloriage ?

    a003-099.gifLes mathématiciens aiment colorier. Peut-être n'ont-ils pas eu le temps de le faire à l'école, alors ils rattrapent le temps perdu.

    Dès 1852, l'un d'entre eux se demanda combien il fallait de couleurs pour colorier tous les pays de n'importe quelle carte sans que deux pays voisins n'aient la même couleur. Le problème est capital car dans le cas contraire on ne pourrait plus distinguer ces deux pays après coloriage. Il pensa que quatre devait être suffisant. Beaucoup de mathématiciens prirent aussi leurs crayons de couleurs et se mirent d'accord sur le nombre : 4 doit convenir mais ils ne s'accordèrent qu'à moitié sur la preuve car celle-ci faisait intervenir un bien étrange "personnage": un ordinateur. Bref après quelques guéguerres internes sur le style, l'incontournable boite aux quatre crayons nécessaire pour colorier toutes les cartes planes imaginables de l'univers s'appelle désormais "Théorème des quatre couleurs".

     

    Je t'ai apporte des crayons

     

    Malgré  la difficulté de la preuve et des conversations qui lui étaient associée, les mathématiciens s'ennuyaient un peu. C'est ainsi qu'en 1950, un certain Edward Nelson, agé de seulement 18 ans, lança un autre coloriage encore en vogue pour les occuper.

    D'un air sans doute amusé, il soumit à la communauté, le petit problème suivant :

    Combien faut-il de couleurs différentes pour colorier chaque point du plan, de façon que deux points distants d'une unité n'aient pas la même couleur?

    Si les mathématiciens étaient troublés, ce n'était pas parce qu'ils se demandaient avec quel type de crayon ils allaient réaliser cet étrange travail mais plutôt pourquoi est-ce qu'ils avaient seulement réussi à démontrer qu'il fallait au moins 4 couleurs et au plus 7 pour réaliser cette activité presque manuelle? Ils ne parvenaient pas à donner le nombre exact de couleurs minimal dont ils avaient besoin pour colorier les points du plan avec cette contrainte: 4,5,6 ou 7?

     

    My son's color pencils

     

    Alors d'où vient la difficulté? Certainement de la théorie des ensembles à laquelle on peut adjoindre différentes versions de l'axiome du choix ou au contraire  l'en priver.

    L'axiome du choix dit qu'il est possible de prélever des éléments d'ensembles différents et de construire un autre ensemble. Si l'idée parait simpliste lorsque les ensembles sont finis, elle ne l'est pas lorsqu'ils deviennent infinis.

    m4-18.jpgBertrand Russel, nous donne une vague idée de ce que peut-être l'axiome du choix au quotidien :

    Pour choisir une chaussette plutôt que l'autre pour chaque paire d'une collection infinie, on a besoin de l'axiome du choix. Mais pour les chaussures, ce n'est pas la peine.

    Explication :

    • Quand on dispose d'une paire de chaussettes quelconque, on n'a aucun moyen a priori de distinguer une chaussette de l'autre, ce sont des objets a priori identiques et même si chaque matin on arrive à choisir laquelle on va mettre en premier, on serait bien en peine de trouver un procédé général qui nous permette de renouveler l'exploit éternellement.
    • Pour les chaussures, il existe un moyen de choisir qui marche tout le temps (une fonction de choix naturelle) : choisir toujours la chaussure gauche (ou droite) puisqu'il y a toujours une chaussure gauche et une chaussure droite.

     

    Cet axiome du choix est vraiment un élement trouble-fête. Il avait déjà permis à un étrange mathématicien peu scrupuleux de s'enrichir.

    Il s'est aussi mis sur le chemin de deux mathématiciens Soifer et Shelah qui parvinrent à démontrer qu'en utilisant deux versions différentes de cet axiome, il fallait pour résoudre le même problème de coloriage, soit 2 couleurs, soit une infinité! C'est le grand écart.

    Tout cela pour vous dire que les mathématiciens ont vraiment des "gros problèmes de coloriage"!

     

    Inspiré de - Coloriages irréels - Complexités de Jean-Paul Delahaye aux éditions Pour la Science

     

    Pour compléter sur l'axiome du choix :

    Du choix dans la dissection -  sur le blog Choux romanesco et intégrale curviligne

     

     

     

  • Les mathématiques et la bureaucratie ou le formalisme dans les mathématiques.

    Aurait-on pu confier le théorème de Fermat à un groupe d'Enarques qui nous auraient fait des directives, des super-directives ? Y seraient-ils arrivés en 300 ans? C'est impossible, il faut des idées!

    Jean-Yves Girard (au sujet du formalisme en mathématiques - 19.45)

    Une excellente conférence pleine d'humour.

     

     

  • Leibniz, le podcast, Dieu, le meilleur des mondes, le calcul différentiel et les algorithmes NP-complets

    Si avec un titre comme ça, si je n'arrive pas à la première ligne sur Google... je ne comprends plus rien !

    Voilà un petit texte comme je les adore.

    Je l'ai traduit de l'anglais. Il s'agit du podcast 83 de MathMutation. Un vrai régal.


    podcast

     

    Le texte original du podcast

     

    Ma traduction:

    Si vous êtes comme moi, vous vous rappelez probablement du roman satirique de Voltaire Candide comme l’un des romans du 18ème siècle les plus agréables que vous avez lu au lycée. Son intrigue implique un jeune homme plutôt idiot qui est instruit par un philosophe optimiste nommé Pangloss. Pangloss insiste sur le fait qu’ils vivent dans le meilleur des mondes, malgré qu’il ait perdu un oeil et une oreille, qu’il ait attrapé la syphillis, qu’il ait été vendu comme esclave et qu’il ait vécu l'épreuve de terribles désastres tels que le feu, les tremblements de terre, et un tsunami.

     

    Mais saviez-vous que la philosophie que parodie Pangloss provient de façon directe du développement du calcul ?

    Cette connexion vient du fait que Gottfried Leibniz, le co-inventeur du calcul différentiel, était aussi un philosophe de grande renommée. Vous vous rappelez certainement que la clé du calcul différentiel tient dans sa capacité à trouver la valeur maximale d’une fonction. Cela fonctionne parce que le calcul nous permet de regarder la pente d’une courbe, en mesurant de quelle façon elle monte ou elle descend, de façon infinitésimale en chacun de ses points.

     

    Quand une courbe a arrêté de monter et est sur le point de redescendre, sa pente est de 0 et elle a atteind un maximum local. Ainsi si vous pouvez déterminer le point où la pente d'une courbe est 0, vous pouvez trouver un maximum.

     

    Dans les mathématiques, cette idée est indiscutable. Mais Leibniz a étendu cette possibilité au domaine de la philosophie. Comme prémisse de base, il a commencé par une de sa religion chrétienne, en affirmant qu'il y avait un Dieu omniscient et tout-puissant qui a conçu l'univers.

     

    Un Dieu omniscient ou omnipotent connaitrait, très probablement le calcul et serait capable de produire un super-calcul divin beaucoup plus puissant que celui que Leibniz a développé.

    Etant omniscient, il connaitrait toutes les variables qui permettraient de décrire l’univers et de définir la fonction complexe qui permettrait la description correcte de l’univers.
    Supposons aussi que Dieu possède une bonté infinie,. Il est indicutable qu’il appliquerait son super-calcul à la fonction de bontée de l’univers et déterminerait ainsi son maximum absolu.

    Donc si quelquechose de local semble mauvais, c’est seulement parce qu’en association avec les autres variables de l’univers, ce doit être nécessaire pour atteindre ce maximum absolu.

     

    En réalité, je trouve que c’est dur de batailler avec un tel raisonnement. Des siècles après Leibniz, beaucoup de fonctions compliquées ont été définies, dont nous ne possédons pas d'algorithmes pour les optimiser dans un temps raisonnable, mais Dieu qui possèderait toutes les techniques mathématiques dont il a besoin, ne se soucierait pas des délais fixés. Après tout, s'il y a vraiment un dieu tout-puissant qui aime créer des univers, il peut aussi prendre son temps en le faisant, même s'il doit y passer plusieurs éternités en exécutant un algorithme NP-complet d’optimisation.

     

    Ainsi, si votre religion admet l’existence d’un Créateur omniscient et omnipotent, alors Pangloss et Leibniz ont tous les deux raison et l’on doit vraiment vivre dans le meilleur des mondes.

     

    Widget "Podcasts mathématiques"

  • Le paradoxe de Monty Hall

    Qu'est-ce que le problème de Monty Hall ? Il est issu d'un jeu télévisé.

     

    Il y a trois cartes devant vous face cachée. L'une des trois est gagnate et vous devez la trouver.

    Vous en choisissez une des trois sans la regarder.

    Quelqu'un qui connait les cartes, en retourne, une des deux que vous n'avez pas choisie et qui est perdante.

    Que devez vous faire? Retourner la carte que vous avez chosie initialement ou retourner l'autre ?

    Les probabilités sont formelles, vous devez impérativement changer votre choix pour augmenter vos chances de gagner.

    Essayez par vous même:

     

    monty hall.jpg
  • Des nombres qui ne servent à rien ?

    14410.png
    Qu'ont  en commun 8795, 9935, 11147, 11446, 11612, 11630 ?

    Existe-t-il des nombres  qui ont moins de propriétés que les autres ?

    Qu'est-ce qu'un nombre acratopège ?

    Pourquoi n'allez-vous pas voir directement sur le blog du Docteur Goulu ?