Ok

En poursuivant votre navigation sur ce site, vous acceptez l'utilisation de cookies. Ces derniers assurent le bon fonctionnement de nos services. En savoir plus.

Paradoxes, limitations,erreurs - Page 9

  • Un calcul qui commence bien mais qui finit mal

    gif.latex.jpg
    La puissance est une multiplication qui elle même est une addition. Si les deux premiers calculs ne souffrent d'aucune ambiguité, ce n'est pas le cas du troisième. 

    Si quelqu'un a une explication simple ! 

     

  • "Garde à vue" mathématique

     

    Identifiez-vous l'auteur du crime ?
    Interrogeons les complices.
    J'appelle mon avocat.
    En prison.

    Bibliothèque de prison / Prison library

    Que se passe-t-il si l'on fait rentrer dans une garde à vue, un peu d'informatique, de mathématiques et de logique ?

     

    Identifiez-vous l'auteur du crime ?

    Derrière une vitre fumée, le témoin oculaire regarde précisément les individus numérotés qui sont devant lui. Se souvient-il correctement de la scène, des détails ? Ce qui lui est dit va-t-il influencer son choix ? Ces questions relèvent de la psychologie scientifique. La modélisation des comportements associés peut paraître surprenante au néophyte, elle existe pourtant et s'appelle WITNESS. Les modèles mathématiques et de simulation réalisés pour la psychologie du témoignage vont permettre de mieux la théoriser et de  comprendre plus profondément les mécanismes qui rentrent en jeu.

    L'article du CNRS "L'ordinateur, les mathématiques et le témoin occulaire"

     

    Interrogeons les complices.

    La séparation d'éventuels complices et leur interrogatoire séparé, les placent souvent dans la situation que l'on appelle "le dilemme du prisonnier" bien connu dans le domaine des mathématiques qui s'appelle la théorie des jeux. Le dilemme du prisonnier est le point de départ de nombreuses variantes plus complexes de ce jeu .


    La version originelle est la suivante :

    Deux suspects sont arrêtés par la police. Mais les agents n'ont pas assez de preuves pour les inculper, donc ils les interrogent séparément en leur faisant la même offre. « Si tu dénonces ton complice et qu'il ne te dénonce pas, tu seras remis en liberté et l'autre écopera de 10 ans de prison. Si tu le dénonces et lui aussi, vous écoperez tous les deux de 5 ans de prison. Si personne ne se dénonce, vous aurez tous deux 6 mois de prison. »

    En fait le choix des deux hommes va s'effectuer dans une recherche de choix personnel favorable, ce qui n'est pas la solution optimale. Ils se dénoncent le plus souvent l'un l'autre, ayant trop peur d'écoper de 10 ans de prison alors que l'autre resterait en liberté.

    Le dilemme du prisonnier interpelle sur ce qui relève des conditions de coopération entre les individus. C'est un domaine tout a fait mathématisable en terme de probabilités de gain ou de pertes, il est donc modélisable assez "facilement".

    Sous quelles conditions, des acteurs ( de la théorie des jeux ) vont-ils choisir la coopération plutôt que la trahison?  Cette question est d'autant plus importante que les réseaux sociaux se développent de façon exponentielle avec Internet. Il est donc intéressant de connaître un indicateur de coopération maximale. Il semble qu'une taille critique du réseau social de cooépration apparaisse, elle serait de 50 personnes, la "Goldilockszone" et se formerait autour d'un maître d'influence. La configuration suivant serait donc optimale en terme de coopération: les individus se répartissent par grappes d'une cinquantaine de personnes se connaissant et qui s'est agrégée à partir d'un "influenceur". Chaque acteur qui joue bien, peut à son tour en influencer d'autres à coopérer. La seule façon qu'un coopérateur a de survivre est de former un groupe de coopérateurs autour de lui. Si le réseau social est trop petit ou trop grand, la trahison envahit rapidement les acteurs et casse les groupes.

    L'article en Anglais de SciencesNews

     

    En parcourant l'article Le dilemme du prisonnier de Culturemaths, on en apprend un peu plus sur les "règles" de la coopération :

     

    1. Certaines études ont montré que les femmes coopèrent davantage que les hommes.

    2. Chez des enfants âgés de 6 à 11 ans, on a observé un taux de coopération (c’est-à-dire un pourcentage de sujets optant pour la coopération) qui augmente avec l’âge, un résultat suggérant, en conformité avec certains principes de la psychologie de l’enfant, un apprentissage progressif des normes sociales de coopération.

    3. L es étudiants en économie sont moins coopératifs que les autres !

    4. Les étudiants anglo-saxons coopèrent moins que les autres.

    5. Les traits de personnalité influencent le comportement face au jeu.

    6. Les autistes ne se comportent pas différemment des sujets « normaux », mais ont une perception très différente du jeu.

    7. La communication entre les joueurs renforce la coopération.

    8. La coopération est plus forte lorsque les sujets se connaissent et partagent un esprit de groupe.

    9. L’introduction d’un mécanisme de sanction peut renforcer la coopération, même si elle a parfois des effets pervers en introduisant une suspicion entre les joueurs qui peut inhiber certains comportements coopératifs.

    10. La pression sociale (pression par les pairs) est un mécanisme incitatif à la coopération particulièrement puissant.

     

    J'appelle mon avocat.

    Il ne serait pas surprenant que la garde à vue se termine en procès. Or pourquoi ne pas essayer de trouver une plaidoirie gagnante à tous les coups: qu'elle soit celle de la défense ou de l'accusation? Comment trancher dans ce cas puisque sur des faits identiques, les arguments avancés peuvent l'être à charge ou à décharge. Un tel procès n'existe pas? Si bien sûr c'est celui de Protagoras contre son élève Euathlus qui aboutit au paradoxe de l'avocat.

     

    En prison.

    Et du procès à la prison, il n'y a qu'un pas...Des mathématiciens en prison, impossible n'est pas ? Non, pas du tout. Il existe quelques exemples célèbres


    Le célèbre Galois a écopé de 6 mois de prison pour port illégal d'uniforme et port d'armes prohibé : ICI

    Theodore John Kaczynski surnommé Una-Bomber a été mathématicien et terroriste.

    Libri, mathématicien et bibliophile italien, est tristement célèbre pour le vol de plus de 30 000 pièces aux bibliothèques françaises. Il fut condamné par contumas après s'être enfui à l'étranger.

    Si vous en connaissez d'autres, je suis preneur !

     

    Pour compléter :

    L'histoire de la psychologie scientifique, cours de Claude Bonnet Université Louis Pasteur en PDF : 1 2 3

  • Des p'tits problèmes de coloriage ?

    a003-099.gifLes mathématiciens aiment colorier. Peut-être n'ont-ils pas eu le temps de le faire à l'école, alors ils rattrapent le temps perdu.

    Dès 1852, l'un d'entre eux se demanda combien il fallait de couleurs pour colorier tous les pays de n'importe quelle carte sans que deux pays voisins n'aient la même couleur. Le problème est capital car dans le cas contraire on ne pourrait plus distinguer ces deux pays après coloriage. Il pensa que quatre devait être suffisant. Beaucoup de mathématiciens prirent aussi leurs crayons de couleurs et se mirent d'accord sur le nombre : 4 doit convenir mais ils ne s'accordèrent qu'à moitié sur la preuve car celle-ci faisait intervenir un bien étrange "personnage": un ordinateur. Bref après quelques guéguerres internes sur le style, l'incontournable boite aux quatre crayons nécessaire pour colorier toutes les cartes planes imaginables de l'univers s'appelle désormais "Théorème des quatre couleurs".

     

    Je t'ai apporte des crayons

     

    Malgré  la difficulté de la preuve et des conversations qui lui étaient associée, les mathématiciens s'ennuyaient un peu. C'est ainsi qu'en 1950, un certain Edward Nelson, agé de seulement 18 ans, lança un autre coloriage encore en vogue pour les occuper.

    D'un air sans doute amusé, il soumit à la communauté, le petit problème suivant :

    Combien faut-il de couleurs différentes pour colorier chaque point du plan, de façon que deux points distants d'une unité n'aient pas la même couleur?

    Si les mathématiciens étaient troublés, ce n'était pas parce qu'ils se demandaient avec quel type de crayon ils allaient réaliser cet étrange travail mais plutôt pourquoi est-ce qu'ils avaient seulement réussi à démontrer qu'il fallait au moins 4 couleurs et au plus 7 pour réaliser cette activité presque manuelle? Ils ne parvenaient pas à donner le nombre exact de couleurs minimal dont ils avaient besoin pour colorier les points du plan avec cette contrainte: 4,5,6 ou 7?

     

    My son's color pencils

     

    Alors d'où vient la difficulté? Certainement de la théorie des ensembles à laquelle on peut adjoindre différentes versions de l'axiome du choix ou au contraire  l'en priver.

    L'axiome du choix dit qu'il est possible de prélever des éléments d'ensembles différents et de construire un autre ensemble. Si l'idée parait simpliste lorsque les ensembles sont finis, elle ne l'est pas lorsqu'ils deviennent infinis.

    m4-18.jpgBertrand Russel, nous donne une vague idée de ce que peut-être l'axiome du choix au quotidien :

    Pour choisir une chaussette plutôt que l'autre pour chaque paire d'une collection infinie, on a besoin de l'axiome du choix. Mais pour les chaussures, ce n'est pas la peine.

    Explication :

    • Quand on dispose d'une paire de chaussettes quelconque, on n'a aucun moyen a priori de distinguer une chaussette de l'autre, ce sont des objets a priori identiques et même si chaque matin on arrive à choisir laquelle on va mettre en premier, on serait bien en peine de trouver un procédé général qui nous permette de renouveler l'exploit éternellement.
    • Pour les chaussures, il existe un moyen de choisir qui marche tout le temps (une fonction de choix naturelle) : choisir toujours la chaussure gauche (ou droite) puisqu'il y a toujours une chaussure gauche et une chaussure droite.

     

    Cet axiome du choix est vraiment un élement trouble-fête. Il avait déjà permis à un étrange mathématicien peu scrupuleux de s'enrichir.

    Il s'est aussi mis sur le chemin de deux mathématiciens Soifer et Shelah qui parvinrent à démontrer qu'en utilisant deux versions différentes de cet axiome, il fallait pour résoudre le même problème de coloriage, soit 2 couleurs, soit une infinité! C'est le grand écart.

    Tout cela pour vous dire que les mathématiciens ont vraiment des "gros problèmes de coloriage"!

     

    Inspiré de - Coloriages irréels - Complexités de Jean-Paul Delahaye aux éditions Pour la Science

     

    Pour compléter sur l'axiome du choix :

    Du choix dans la dissection -  sur le blog Choux romanesco et intégrale curviligne

     

     

     

  • Les mathématiques et la bureaucratie ou le formalisme dans les mathématiques.

    Aurait-on pu confier le théorème de Fermat à un groupe d'Enarques qui nous auraient fait des directives, des super-directives ? Y seraient-ils arrivés en 300 ans? C'est impossible, il faut des idées!

    Jean-Yves Girard (au sujet du formalisme en mathématiques - 19.45)

    Une excellente conférence pleine d'humour.

     

     

  • Leibniz, le podcast, Dieu, le meilleur des mondes, le calcul différentiel et les algorithmes NP-complets

    Si avec un titre comme ça, si je n'arrive pas à la première ligne sur Google... je ne comprends plus rien !

    Voilà un petit texte comme je les adore.

    Je l'ai traduit de l'anglais. Il s'agit du podcast 83 de MathMutation. Un vrai régal.


    podcast

     

    Le texte original du podcast

     

    Ma traduction:

    Si vous êtes comme moi, vous vous rappelez probablement du roman satirique de Voltaire Candide comme l’un des romans du 18ème siècle les plus agréables que vous avez lu au lycée. Son intrigue implique un jeune homme plutôt idiot qui est instruit par un philosophe optimiste nommé Pangloss. Pangloss insiste sur le fait qu’ils vivent dans le meilleur des mondes, malgré qu’il ait perdu un oeil et une oreille, qu’il ait attrapé la syphillis, qu’il ait été vendu comme esclave et qu’il ait vécu l'épreuve de terribles désastres tels que le feu, les tremblements de terre, et un tsunami.

     

    Mais saviez-vous que la philosophie que parodie Pangloss provient de façon directe du développement du calcul ?

    Cette connexion vient du fait que Gottfried Leibniz, le co-inventeur du calcul différentiel, était aussi un philosophe de grande renommée. Vous vous rappelez certainement que la clé du calcul différentiel tient dans sa capacité à trouver la valeur maximale d’une fonction. Cela fonctionne parce que le calcul nous permet de regarder la pente d’une courbe, en mesurant de quelle façon elle monte ou elle descend, de façon infinitésimale en chacun de ses points.

     

    Quand une courbe a arrêté de monter et est sur le point de redescendre, sa pente est de 0 et elle a atteind un maximum local. Ainsi si vous pouvez déterminer le point où la pente d'une courbe est 0, vous pouvez trouver un maximum.

     

    Dans les mathématiques, cette idée est indiscutable. Mais Leibniz a étendu cette possibilité au domaine de la philosophie. Comme prémisse de base, il a commencé par une de sa religion chrétienne, en affirmant qu'il y avait un Dieu omniscient et tout-puissant qui a conçu l'univers.

     

    Un Dieu omniscient ou omnipotent connaitrait, très probablement le calcul et serait capable de produire un super-calcul divin beaucoup plus puissant que celui que Leibniz a développé.

    Etant omniscient, il connaitrait toutes les variables qui permettraient de décrire l’univers et de définir la fonction complexe qui permettrait la description correcte de l’univers.
    Supposons aussi que Dieu possède une bonté infinie,. Il est indicutable qu’il appliquerait son super-calcul à la fonction de bontée de l’univers et déterminerait ainsi son maximum absolu.

    Donc si quelquechose de local semble mauvais, c’est seulement parce qu’en association avec les autres variables de l’univers, ce doit être nécessaire pour atteindre ce maximum absolu.

     

    En réalité, je trouve que c’est dur de batailler avec un tel raisonnement. Des siècles après Leibniz, beaucoup de fonctions compliquées ont été définies, dont nous ne possédons pas d'algorithmes pour les optimiser dans un temps raisonnable, mais Dieu qui possèderait toutes les techniques mathématiques dont il a besoin, ne se soucierait pas des délais fixés. Après tout, s'il y a vraiment un dieu tout-puissant qui aime créer des univers, il peut aussi prendre son temps en le faisant, même s'il doit y passer plusieurs éternités en exécutant un algorithme NP-complet d’optimisation.

     

    Ainsi, si votre religion admet l’existence d’un Créateur omniscient et omnipotent, alors Pangloss et Leibniz ont tous les deux raison et l’on doit vraiment vivre dans le meilleur des mondes.

     

    Widget "Podcasts mathématiques"