Ok

En poursuivant votre navigation sur ce site, vous acceptez l'utilisation de cookies. Ces derniers assurent le bon fonctionnement de nos services. En savoir plus.

Paradoxes, limitations,erreurs - Page 13

  • L'incomplétude et l'inconsistance

    Il se peut que dans certains cas,
    on puisse démontrer une chose 
    et son contraire

    C'est l'inconsistance


    Il existe des vérités mathématiques
     qu'il est impossible de démontrer

    C'est l'incomplétude


     

     

    La page de Gérard Villemin sur l'incomplétude de Gödel : ICI

    Et la page Enigmes et Paradoxes : ICI

     

     

    Gödel: Indémontrable mais vrai, l'article de Principia : ICI

     

  • Lorsqu'un mathématicien fabrique de l'or...

    Contrairement à une idée largement répandue selon laquelle tout mathématicien se contenterait pour vivre, d'un peu d'eau et de quelque problème ardu, l'exemple suivant nous prouve le contraire et montre même, que comme beaucoup, le mathématicien peut aussi être bassement attiré par les richesses matérielles et le gain d'argent. En mathématiques, on nommerait cela  un contre-exemple qui, à lui seul, a la faculté ( économique elle )  d'invalider la proposition générale.

    Dans un article de "Pour la Science" de Juin 1989, le rédacteur de la rubrique "Créations informatiques", E. Dewdney, fait part au public de la réception d'une étrange lettre d'un mathématicien, qui, voulant garder l'anonymat, avait pris le pseudonyme de A. Cranu. Ce dernier appuyait son récit sur le théorème paradoxal de Banach-Tarski affirmant que l'on peut découper un solide en morceaux et obtenir un solide deux fois plus gros ou deux solides identiques.

    En fait de paradoxe, le théorème utilise la propriété d'équivalence d'ensembles d'intérieurs non vides et bornés de l'espace à 3 dimensions usuel (  on dirait les volumes ) pour démontrer qu'il est possible de découper l'un d'entre eux et obtenir un solide plus volumineux ou deux solides identiques au premier, tout morceau du volume de départ pouvant être superposé à un morceau du ou des volumes d'arrivée !

    Il serait donc possible de prendre une boule, de la découper et d'obtenir une boule plus grosse. A. Cranu explique dans sa mystérieuse lettre, qu'il s'est lancé dans le "grossissement" de la boule...  d'or. Tant qu'à faire, autant que se soit lucratif.

    Pour cela, il affirme avoir utilisé son ordinateur personnel pour réaliser ce découpage, car si le théorème indique bien qu'un tel découpage est possible, il ne dit rien sur la façon de le réaliser. En fait les morceaux ressembleraient à des fractales. A. Cranu indique qu'il a eut recours à un générateur de nombres aléatoires en triple précision et à un algorithme qui lui a permis, Ô surprise, de dessiner la forme de ces morceaux et qu'il a vu apparaitre sur son écran une nouvelle boule ayant doublé son volume.

    A. Cranu précise qu'il ne put résister à l'idée d'appliquer ces résultats à la découpe d'une boule, bien réelle celle-là, en or massif. Le lendemain, il entama ses économies et fit couler 350 grammes d'or en boule et se dota d'une scie d'orfèvre. A. Cranu affirma avoir travaillé 7 longs mois, jours et nuits, dimanches et jours fériés, pendant lesquels il abima sa vue et reconstruisit la nouvelle boule en suivant le découpage qui lui était proposé par l'ordinateur. L'assemblage lui pris plussieurs semaines, les morceaux les plus intérieurs, étant les plus difficiles à assembler. Il affirme que la nouvelle boule est plus irrégulière que la première, bosselée et laide. Une fois le travail terminé, il l'apporta chez son joaillier qui constata qu'elle pesait... 1406 grammmes. Un peu déçu, car il espérait mieux, A. Cranu n'en fut pas moins ébahi d'avoir créé de l'or.

    Ne s'arrétant pas en si bon chemin, A.Cranu affirme dans sa lettre, avoir automatisé le procédé de la construction de grosses boules sur une chaine de montage piloté par ordinateur. L'excès d'or obtenu permettait même d'alimenter le cycle suivant.

    A. Cranu n'a plus écrit à E. Dewdney depuis décembre 1988, date à laquelle il affirma son intention de déménager, compte tenu du danger grandissant, et période à partir de laquelle on put constater une baisse, légère mais régulière, du cours de l'or.

    Ce n'est visiblement plus le cas. Qu'est-il advenu de A. Cranu ? Quelqu'un aurait-il des informations précises sur sa dernière localisation géographique?

    Inspiré d'un article de "Pour la Science" de juin 1989.

  • Résultats du sondage

    c41fc757033adc149f451eb129e15898.jpgJ'arrête ici ce sondage car j'ai remarqué en réalisant le précédent qu'il y avait une assez grande stabilité des résultats à partir de 30 votes et ça faisait assez longtemps qu'il était là ( sinon le public se lasse...).

    La différence par rapport au précédent est  son l'interprétation plus délicate.

    Afin de ne pas m'engager sur un terrain glissant je rappelle ici les résultats :

    2/3 des individus affirment avoir eu envie de répondre au sondage qui leur demandait s'il avait envie d'y répondre.

    Par contre, et c'est là plus surprenant, 1/3 des individus affirment ne pas avoir eu envie de répondre au sondage auquel ils ont répondu alors que personne ne les obligeait à le faire .

    Je suis donc à la recherche de témoignages sur ce mystérieux phénomène, inconnu jusqu'à maintenant. Je cherche aussi des apports théoriques, de la bilbliographie.

    J'ai préparé spécialement pour vous un autre sondage sur lequel vous pouvez dors et déjà vous précipiter.


    Une note précédente sur les sondages : ICI

  • Deux phrases fausses

    Cette phrase contient sept mots

    Cette phrase ne contient pas sept mots