Ok

En poursuivant votre navigation sur ce site, vous acceptez l'utilisation de cookies. Ces derniers assurent le bon fonctionnement de nos services. En savoir plus.

Infos - Page 5

  • Tendance inquiétante sur l'intérêt "mathématique"

    Google Trend permet de dresser des courbes associées aux requêtes sur certains mots-clés. Inutile d'être un expert pour voir que la tendance de recherche est décroissante sur le long terme pour  "mathématiques" et "mathematics".

     

     

    maths1.png

     

     

    Le graphique précédent était en échelle relative, c'est à dire en fraction des recherches totales, mais le résultat n'est pas beaucoup plus réjouissant en échelle absolue sur la même période:

     

    mathématiques.png


    La tendance internationale suit la même pente...

     

    maths2.png

     

    Les origines des requêtes sont intéressantes à analyser, car elles ne sont pas sans surprise :

     

    Pays:

    1. Pakistan
    2. Philippines
    3. India
    4. Malaysia
    5. South Africa
    6. Singapore
    7. Hong Kong
    8. Australia
    9. New Zealand
    10. United Kingdom

     

    Villes:

     

    1. Delhi, India
    2. Chennai, India
    3. Makati, Philippines
    4. Kuala Lumpur, Malaysia
    5. Mumbai, India
    6. Singapore, Singapore
    7. Hong Kong, Hong Kong
    8. Sydney, Australia
    9. Melbourne, Australia
    10. Toronto, Canada

     

    Langues:

    1. Tagalog
    2. English
    3. Chinese
    4. Arabic
    5. Dutch
    6. German
    7. Italian
    8. Turkish
    9. French
    10. Spanish

     

    La Chine n'est bien sûr pas présente dans ces statistiques puisque les requêtes se font majoritairement via Baïdu dans ce pays et non Google (le chinois est cependant la troisième langue mondiale utilisée, en dehors de la Chine!). Nous pouvons cependant remarquer que si la France est le pays des mathématiques, elle l'est peut-être en terme de médailles mais elle n'apparaît pas dans les dix premiers pays pour le nombre des requêtes et le français apparaît timidement en 9ème position pour les langues utilisées. Il est à noter l'allemand se porte plutôt bien, nous sommes derrière la Turquie et de façon assez surprenante, l'anglais n'est pas  la première des langues apparaissant dans cette analyse mais le tagalog que je ne connaissais même pas de nom!

    Les Etats-Unis sont aussi les grands absents de ces données!

    A méditer.

  • SpaceTime:un logiciel de calcul scientifique

    Je viens de découvrir SpaceTime, un  logiciel de calcul formel, de représentation et plus généralement de calcul scientifique. Il est très fluide et libre! Il me semble de plus excellent pour le peu que j'en ai testé. Il suffit de cliquer sur les graphiques pour les agrandir puis de recliquer sur la fenêtre pour revenir au CAS.

    Voilà une copie d'une fenêtre que j'ai réalisée, avec la représentation d'une surface, d'une courbe, le développement d'un binôme avec une valeur complexe et deux calculs de limites:

     

    logiciel, calcul, représentation

     

    Un essai de représentation dans l'espace avec le code associé:

    MultiPlot3D(Plot3D((y-4,x-2),[x,-10,10],[y,-10,10],colors=[orange,blue]),ParametricPlot3D((u,v,500),[u,-1000,1000],[v,-1000,1000],color=[green]),Plot3D((0.001*(x^2+y^2)),color=[yellow]))

    J'ai quelque peu "bidouillé" pour obtenir un affichage cohérent entre les deux plans y=4 et x=2 et le plan horizontal qui nécessite une définition paramétrique.

     

     

    Une courte vidéo permettant de voir le basculement entre les fenêtres de visualisation et le CAS:

     

     

    La vidéo de présentation:

     




    A ne pas oublier: le blog sur lequel j'ai découvert ce logiciel.

  • Perles mathématiques 2.0

    Il y a un an et demi, j'enfilais quelques perles mathématiques sur Pearltrees presque seul. Aujourd'hui, force est de constater que la culture de la perle se porte bien et nous permet de faire une visite originale du web mathématique.

    Bon voyage en cliquant sur l'image.

     

    pearltrees, web2.0, mathématiques

     

     

  • Les mots aident nous aident à former les concepts mathématiques

    Le sujet est épineux. Quels rapports entretiennent les concepts mathématiques et les mots qui les définissent, ou plus exactement avec l'image mentale qui se construit lorsque l'on utilise des mots? Stella Baruk a abordé un aspect de cette question, en pointant les mélanges et confusions qui pouvaient se produire en associant les concepts mathématiques à des mots ainsi qu'en formulant des problèmes à contenu mathématique en langage courant (ou supposé comme tel).

    Une équipe de l'Université de Chicago a réalisé une expérience très intéressante qui va certainement permettre de nombreuses autres avancées ultérieures. Les recherches ont été faites sur une population de sourds du Nicaragua qui  n'ont jamais appris le langage des signes et qui communiquent entre eux avec des gestes qu'ils ont développé eux-mêmes que l'on appellera autosigneurs. Ils sont dans l'incapacité de comprendre la valeur de nombres plus grands que trois parce qu'ils n'ont pas développé de signes associés.

    En revanche, les personnes sourdes qui apprennent la langue des signes classique comme les enfants, peuvent apprendre le sens des grands nombres. Les chercheurs pensent que c'est parce que les langues contiennent des signes conventionnels, comme la langue parlée, que les enfants peuvent apprendre très tôt la routine du comptage.

     

    sourd_001.png

    Vidéo montrant une personne sourde autosigneuse qui ne comprend pas les nombres supérieurs à trois en ne parvenant pas à faire correspondre un nombre de pions avec le  nombre de coups qu'elle reçoit sur la main.

    L'étude illustre la complexité de l'apprentissage des relations symboliques inscrites dans le langage, y compris le simple concept de nombre. Le travail effectué pourra aider les chercheurs à mieux comprendre comment le langage façonne la manière dont les enfants aprennent les concepts mathématiques de façon précoce et comment ce processus crucial se déroule pendant la période préscolaire. 

    Lire la suite

  • LES MATHÉMATIQUES EN FRANCE ET DANS LES SCIENCES

    RAPPORT sur LES MATHÉMATIQUES EN FRANCE ET DANS LES SCIENCES
    en présence des lauréats de la médaille Fields,
    MM. Ngô Bảo Châu et Cédric Villani,
    ainsi que du lauréat du prix Gauss, M. Yves Meyer
    Compte rendu de la réunion du 17 novembre 2010

    Par M. Claude Birraux, Député

    EXTRAIT

     

    M. Sylvestre Huet, journaliste à Libération.

    Nous restons un peu sur notre faim. Vous avez d’emblée évoqué les points forts sur lesquels s’est fondée la fameuse excellence de l’école française. Or l’organisation du système de recherche français a subi de grands bouleversements. Selon vous, cela aura-t-il des conséquences positives ou négatives, ou bien une combinaison des deux selon les différents aspects ? Peut-être faudrait-il parler d’autre chose que des médaillés Fields et des quelques autres récompensés, dont les cas sont certes singuliers mais qui sont limités sur le plan des effectifs. En d’autres termes, le nouveau système entraînera-t-il un maintien, un accroissement ou une diminution de la force de frappe des sciences utilisant des mathématiques ? Prenons un peu de recul historique : la France produit ni plus ni moins de docteurs ès sciences qu’en 1993, c’est-à-dire depuis longtemps, dans un contexte où certains pays moyens ou émergents sont dans une dynamique. Cette stagnation, qui frappe les mathématiciens mais aussi les physiciens, les chimistes, les biologistes et les spécialistes des sciences de la terre utilisant les mathématiques, peut-elle continuer ? Pouvons-nous rester dans cette ère, alors que tout le monde nous dit que le futur sera piloté par les sciences et techniques ? Cela me semble la question la plus cruciale ; je ne suis pas convaincu que l’enjeu, aujourd’hui, pour le système de recherche français, réside aux extrémités, école primaire d’un côté, Normale Sup’ de l’autre.


    M. Cédric Villani.

    Votre question est très difficile car elle fait appel à de la prédiction, exercice toujours délicat. Si j’ai bien compris, vous vous interrogez sur l’impact possible des réformes actuelles sur l’enseignement supérieur. Les bouleversements étant en cours, nous ne disposons pas du recul nécessaire pour savoir comme la situation évoluera. La loi instaurant l’autonomie des universités, notamment, a fait couler beaucoup d’encre. Je suis très favorable à l’autonomie mais beaucoup de gens ne pensent pas comme moi. En tout cas, tout le monde se reconnaît, je crois, dans le mouvement actuel de revalorisation de l’université en tant que lieu de travail et de production de science. Cela plaît particulièrement aux mathématiciens, pour lesquels une carrière normale, passionnante, consiste à travailler au contact des étudiants, à l’université ; celle-ci, pour nous, joue un rôle central.
    Ensuite, une divergence est sensible entre partisans de la centralisation et de l’autonomie. Personnellement, je pense que la gestion matérielle des universités ne peut se faire à distance, de manière abstraite, qu’elles ont absolument besoin d’un pilotage de terrain. La dimension politique locale est également primordiale. Quant aux effets à long terme, il est difficile de les prévoir.
    S’agissant des pays émergents, l’université chinoise de Fudan, que j’ai visitée il y a peu, possède un campus effrayant : les standards de qualité de vie sont équivalents à ceux de Stanford. Des sommes considérables sont manifestement investies année après année. Le niveau des élèves n’est évidemment pas le même qu’à Stanford mais l’attractivité est réelle. Peut-être la question des moyens est-elle vitale, les solutions sont souvent simples.

    M. Claude Birraux.

    La perception de la science et des scientifiques, en Chine, n’est sans doute pas tout à fait la même qu’en France. Certains, chez nous, considèrent que la science est malpropre et que, par conséquent, il ne vaut mieux pas en faire.


    M. Cédric Villani.

    Les sciences ne bénéficient en effet pas du même respect en Europe et en Asie. Et cela se répercute sur les dirigeants politiques : il est très fréquent, en Chine, que des anciens scientifiques occupent des postes très élevés ; c’est incontestablement beaucoup plus rare dans notre système.


    M. Yves Meyer.

    Pour répondre très clairement, j’ai toujours été animé par la passion de transmettre et j’ai commencé à enseigner dans le secondaire, avant de poursuivre, pendant quinze ans, en première année de premier cycle universitaire. Mes élèves n’étaient donc ni des médaillés Fields ni des écoliers. La tradition mathématique française, Cédric l’a dit, a consisté à transmettre le feu sacré. Mais cela suppose une réponse. Si aucun public ne vient assister à un concert, à qui en incombe la faute ? Même si le programme est merveilleux, il faut que la société soit au rendez-vous.

    La désaffection relative vis-à-vis des sciences traduit aussi la désaffection vis-à-vis de l’effort, mot pratiquement banni de l’enseignement secondaire actuel. Quand j’enseignais en lycée, de 1960 à 1963, je donnais un problème par semaine ; avec cent élèves et dix pages par copie, cela faisait mille pages à corriger et annoter chaque semaine, j’y consacrais mon samedi et mon dimanche. Aujourd’hui, quiconque ferait de même serait traité de bourreau. Les enseignants ne donnent qu’un problème par trimestre, parce que la notion d’effort a disparu.