Ok

En poursuivant votre navigation sur ce site, vous acceptez l'utilisation de cookies. Ces derniers assurent le bon fonctionnement de nos services. En savoir plus.

La Recherche - Page 16

  • Sur Internet on discute de tout et de rien, donc de la preuve de P=NP !

    Tout a commencé il y a une quinzaine de jours lorsqu'un mathématicien ingénieur a mis en ligne les éléments d'une preuve de l'un des problèmes mathématiques les plus difficiles à savoir si P=NP.


    Pour les non-matheux, j'imagine que cela n'évoque rien et pour les matheux moyens, comme moi, la vague idée que c'est un problème ardu qui traite de la complexité des algorithmes et qui rapportera un million de dollars à qui le résoudra (s'il accepte la somme... elle vient d'être refusée par le mathématicien russe Perelman pour un autre problème).


    Le mathématicien s'appelle Vinay Deolalikar et sa publication a mis la communauté mathématique internationale en effervescence. En effet, les commentaires sur les blogs, forums et les wikis n'ont pas cessé depuis la publication de la preuve sur Arxiv, il y a une quinzaine de jours.


    Il en reste des traces un peu partout et en particulier:


    Sur le blog de Terence Tao, qui rappelons le au passage fut Médaille Fields.


    Sur le blog Gödel lost letter and P=NP.


    Une semaine: c'est le temps quil aura fallu pour que deux failles importantes soient trouvées par les mathématiciens les plus talentueux dans cette preuve qui aura fait beaucoup parlé d'elle.

     

    Ce qui est surprenant dans cette histoire c'est d'une part le niveau de technicité et d'expertise que peuvent prendre des échanges sur la toile, ce qui contredit largement l'idée selon laquelle Internet serait un lieu d'échanges de seconde zone et d'autre part la rapidité avec laquelle se sont faits ces échanges.


    Même si l'on n'est pas sensible aux sujets mathématiques on ne peut qu'être interpellé par cette révolution permise par le monde numérique dans l'accès aux documents, leur diffusion et les discussions qui en sont issues.


    Le New-York Times a d'ailleurs rédigé un article sur ce sujet, pointant l'étonnant pouvoir collaboratif de la Toile. A lire de toute urgence !

     

  • Les maths, et puis quoi encore ?

    Suite au colloque "Maths à venir", le CIJM a édité une brochure qui met en lumière l'omniprésence des mathématiques dans la société actuelle et les enjeux stratégiques de leur maîtrise et de leur développement.

    J'ai pris un grand plaisir à lire "Maths à venir Express". On y retrouve les mathématiques et l'informatique comme formant un couple privilégié, dont l'une ne peut plus se détacher de l'autre et toutes deux plongées au coeur de la médecine, de la biologie, de la finance, de la physique des particules à l'astrophysique et jusque dans les moteurs de recherches.

    Cette brochure offre au pédagogue et au grand public une mine d'exemples et d'arguments permettant de répondre aux questions tellement difficiles:

    Les maths à quoi ça sert?
    Où sont les maths?
    ...

    Je place ci-après la conclusion de la brochure ne dévoilant rien de son contenu et que je vous engage à lire dès maintenant:

    Lire la suite

  • Les p'tites boites (ou presque)

    On dispose de 6 p'tites boites avec une pièce dans chacune d'entre elles:

    latex.php?latex=B_1%2C+B_2%2C+B_3%2C+B_4%2C+B_5%2C+B_6&bg=ffffff&fg=000000&s=0

    Des opérations de 2 types sont possibles :


    Type 1: Choisissez une boîte  latex.php?latex=B_j&bg=ffffff&fg=000000&s=0 non vide avec latex.php?latex=1+%5Cleq+j+%5Cleq+5&bg=ffffff&fg=000000&s=0 . Vous pouvez supprimer une pièce de la boite latex.php?latex=B_j&bg=ffffff&fg=000000&s=0et ajouter deux pièces à latex.php?latex=B_%7Bj%2B1%7D&bg=ffffff&fg=000000&s=0 .


    Type 2:
    Choisissez une boîte latex.php?latex=B_k&bg=ffffff&fg=000000&s=0non vide avec latex.php?latex=1+%5Cleq+k+%5Cleq+4&bg=ffffff&fg=000000&s=0 . Vous pouvez supprimer une pièce de latex.php?latex=B_k&bg=ffffff&fg=000000&s=0et échanger le contenu (éventuellement vide ) des boites latex.php?latex=B_%7Bk%2B1%7D&bg=ffffff&fg=000000&s=0et  latex.php?latex=B_%7Bk%2B2%7D&bg=ffffff&fg=000000&s=0.

    La question est:

    Peut-on, en un nombre fini d'étapes arriver au résultat suivant?


    Les 5 premières boites sont vides et la dernière contient exactement gif.latex.gif pièces de monnaie.

    Si vous avez une piste, c'est  le mini-polymaths.

     

     

  • Découvrez l'UREM

    urem.jpgSi ce n'est déjà fait, je vous conseille de placer l'UREM dans vos signets RSS. L'UREM, c'est l'Unité de Recherche sur l'Enseignement des Mathématiques située à l'Université Libre de Bruxelles.

    Le site de l'UREM sort largement du seul cadre de l'enseignement pour offrir une vision riche et dynamique des mathématiques. Pour prendre un exemple, j'ai trouvé fort intéressant l'article tout public d'aujourd'hui de F. Bruss : Recherche en mathématiques et question éthique en médecine.

  • La structure E8 est apparue en laboratoire

    La structure E8 est très complexe. Elle a nécessité 4 ans de travail pour 18 mathématiciens et 77 heures de calculs sur un super-ordinateur pour être parcourue.

    On vient de trouver sa présence dans l'organisation des spins d'un cristal de Cobalt et de Niobium à 0.04° C au dessus du zéro absolu.

    Les maths sont vraiment partout. Si certains disent que parfois ça chauffe en maths, on peut constater qu'elles s'adaptent ici au froids les plus glacials!

    L'article original

    E8

    Photo: jared