Ok

En poursuivant votre navigation sur ce site, vous acceptez l'utilisation de cookies. Ces derniers assurent le bon fonctionnement de nos services. En savoir plus.

Religions - Page 3

  • Sommes-nous réels ?

    La question semble saugrenue, on se demande même comment une telle idée est concevable . Mais à y regarder de plus près, l'évacuer d'un revers de main serait un peu léger car quelques arguments tirés d'un raisonnement solide militent en la faveur du fait que nous ne le soyons pas!

    Jean-Paul Delahaye nous les explique dans son excellent livre "Complexités", recueil d'articles qu'il a publié dans la revue "Pour la science".

    Comme à l'accoutumée, je vais reprendre les éléments principaux sans détailler le fond de l'article auquel je vous renvoie si le sujet vous intéresse.

    Nick Bostrom propose trois arguments dont la réfutation de deux d'entre eux entraîne nécessairement l'acceptation du troisième. Ces arguments s'appuient sur la notion de "société technologique arrivée à maturité".

    Une société technologique parvient inéluctablement à l'idée de "simulation" et de "modélisation". Cette idée semble naturelle, comme nous pouvons par exemple le constater en ce qui concerne le climat. Une fois l'idée de simulation acceptée, il semble aussi naturel d'accepter la notion de progrès de cette simulation dont l'horizon final serait d'être capable de simuler le comportement du cerveau de façon suffisamment fine pour arriver à ce qu'il coïncide avec le nôtre et que la simulation soit suffisamment autonome et bonne pour la rendre incapable de réaliser que s'en est une.

    Une société technologique arrivée à maturité est donc une société qui est parvenue au résultat précédent. Dans ce cas, le nombre de cerveaux simulés serait incomparablement plus grand que le nombre de "vrais cerveaux" qui les auraient simulés, une telle société utilisant très certainement tous les avantages de la simulation pour en tirer des conclusions sociologiques, historiques, économiques....


    Les 3 arguments de Nick Bostrom sont les suivants :

    Argument 1 : Toute civilisation technologique disparaît avant d'arriver à maturité.

    Argument 2 : Les sociétés technologiques arrivées à maturité abandonnent les simulations de grande précision incluant le cerveau humain.

    Argument 3 : Ma vie et mon environnement sont des illusions car je vis dans une simulation.

    L'argument 1 est difficilement acceptable et l'est d'autant moins que les progrès dans ce domaine avancent et que l'humanité n'a pas encore disparu.

    Accepter l'argument 2 va aussi à l'encontre du constat de ce qui est fait par l'homme jusqu'à maintenant et on a bien du mal à accepter l'idée d'un arrêt complet, brutal et arbitraire des progrès dans ce domaine!

    Il reste donc l'argument 3....

    L'article de Jean-Paul Delahaye est beaucoup plus dense et plus fouillé, il fait intervenir deux autres arguments ( que j'ai synthétisés et donc réduits).

    Argument 4 : La simulation d'un cerveau ne créé pas l'équivalent d'un cerveau.

    Argument 5: Il est impossible de créer une simulation si parfaite qu'aucun indice extérieur ne permettrait aux cerveaux simulés de s'apercevoir que s'en est une ( bug).

    L'argument 4 est contredit usuellement et naturellement par les religions, sa réfutation demandant de nécessairement de se placer dans le champ des arguments religieux. L'argument 5 peut être contredit si l'on considère que tous les comportement irrationnels et inexplicables des humains et des sociétés entières peuvent être considérés comme des bugs.

    Si vous refusez les arguments 4 et 5, il vous faut encore accepter l'argument 3....

    Ajout du 10/02/2010

    Avec l'aimable autorisation de JP Delahaye

    Sommes-nous réels ?

  • L’Education chez les Juifs orthodoxes

    Au début de l’année scolaire 2007-2008 la ministre de l’Education Yuli Tamir, a décidé de dispenser les petites écoles talmudiques de l’étude de l’anglais et des mathématiques. Cela veut dire que 25 000 élèves termineront le lycée sans avoir de base en anglais, en mathématiques et en sciences. Ceci sous la pression des Juifs orthodoxes.

    En 2010 en Israël, un élève sur quatre apprendra l’araméen au lieu de l’anglais, le Talmud au lieu des mathématiques et la loi juive au lieu des sciences.

    La suite de l'article de Cécile Piverdier, sur "Un écho d'Israel" : ICI

  • Buddhabrot : Fractales et Bouddha

    En 1993, Melinda Green invente une nouvelle façon d'obtenir une représentation graphique autour de l'ensemble de Mandelbrot. La coloration sur un point de l'espace complexe ne correspond pas au nombre d'itérations qu'il faut pour que la suite diverge, mais au nombre de fois où il apparaît dans toutes les suites décrivant l'ensemble.

    Le plus impressionnant est que l'image résultante, une fois penchée, devient une figure ressemblant à un bouddha en pleine méditation. Très vite, l'image a circulé, et a pris le nom de Buddhabrot. Certains on vu un signe divin.

    Source sur "Et C++ si affinités" : ICI

    Galeries ICI et ICI

    7b27e013fa6a7f831e7f9fe0a335c717.jpg

    Cette image est extraite de " Gallery of Computation" à voir si vous aimez les arts numériques : ICI

    eb4ebefba6ccc4b24cc8b673f7d375b8.jpg
    Petite remarque personnelle : On ne peut que s'émerveiller devant la toute puissance des mathématiques,
    d'avoir réussi l'impossible, en parvenant à reproduire l'image presque fidèle du Bouddha de la représentation populaire, assis et grossi et non l'image du Bouddha historique, personnage ascétique que personne n'aurait reconnu. S'il existe encore des sceptiques après cela !
  • L'infini des philosophes et des mathématiciens

    c0953c036681906eda925a878893366d.gifSupposons que je divise en deux un dieu infini, alors est-ce que chaque morceau est infini ou fini ?

    Si Dieu est tout puissant, est-ce qu'il peut créer une pierre si lourde qu'il ne puisse pas la soulever lui-même ?

    Qu'est-ce donc que l'infini ?
    Voilà les questions que peuvent se poser  philosophes et religieux.

    Réponse des mathématiciens: " Un ensemble est infini si il est équivalent à un des ses sous-ensembles stricts "....
    Est-ce une définition plus satisfaisante ?

    Peut-être pas, mais elle permet d'aller plus loin... et de tomber sur le paradoxe suivant : L'ensemble de tous les ensembles appartient-il à lui même ?

    Dans un fichier PDF de 14 pages, ICI, Bahram Houchmandzadeh, nous fait parcourir en introduction, rapidement mais de façon intéressante, l'infini des philosophes, pour détailler un peu plus ( dans une partie plus technique ) celui des mathématiciens et des physiciens. On rencontrera les incontournables Cantor et Gödel et une annexe qui montre que seul, dans un univers infini, l'atome d'hydrogène serait instable.


    L'infini en mathématiques, un article ( PDF ) de 15 pages par Eliane Cousquer : ICI

  • Les maths en enfer....

    La tradition veut que la phrase « Que nul n'entre s'il n'est géomètre » ait été gravée à l'entrée de l'Académie, l'école fondée à Athènes par Platon.

    Dans la bible, Joseph, le père de Jésus était charpentier, il connaissait très certainement des notions de mathématiques.


    4f3b45157d1249531fb74d49fce43832.jpg
    Mais qui s'occupe donc de l'enseignement des mathématiques aux enfers ?

    Il s'agit du Roi Asmoday, Surintendant des Enfers, des Maisons de jeu, Asmodée sème dissipation et erreur. Certains en font l’ancien serpent qui séduisit Eve. Asmodée apprend aux hommes à se rendre invisibles, leur enseigne la géométrie, l’arithmétique, l’astronomie et les arts mécaniques. Il connaît les trésors cachés.

    Il est sans doute assisté par le Duc Pucel qui répond sur les sciences occultes, enseigne la géométrie et les arts libéraux. Pucel est accusé de faire entendre de violents bruits ou le mugissement des eaux où il n’y en a pas.

    Vous saurez donc qui demander pour quelques cours particuliers de maths si vous n'atteigniez pas le Paradis - ce qui est hautement improbable, vous connaissant ...


    Source : ICI