aléatoire
-
-
Générer des nombres aléatoires avec un laser
Peu de personnes comprennent ce qu'est le hasard, quelles sont les conditions de sa réalisation. Une fois compris, le hasard est loin d'être maîtrisé car le reproduire artificiellement n'est pas évident du tout.
On peut se donner un représentation du hasard en considérant par exemple une série de 1 et de 0 que l'on générerait par divers procédés artificiels. Le principe général est qu'un nombre une fois donné doit être totalement oublié par le système générateur pour produire le suivant.
La première idée serait d'épeller une suite de 1 et 0 mais un mathématicien même amateur aurait bientôt fait de reconnaitre, après que cette liste soit composée d'une centaine de chiffres environ, que la probabilité qu'elle soit dûe au hasard frôle 0.
La seconde idée est de se faire aider par un ordinateur mais l'implémentation d'un algorithme n'amène qu'à la construction d'une suite de 0 et 1 très proche de celle qui serait totalement aléatoire. Seule une série dite pseudo-aléatoire est générée et en mathématiques on ne badine pas avec le "presque". Lorsque l'on veut du hasard, il nous faut du hasard et non pas presque du hasard.
La troisième idée serait d'utiliser un phénomène physique connu pour être aléatoire. Ici le problème n'est pas la source de production qui est parfaite, mais la vitesse avec laquelle ce phénomène physique va produire ces nombres. Or les physiciens et mathématiciens faisant chauffer leurs ordinateurs, sont de plus en plus gourmands en nombres aléatoires et force est de constater que cette troisième idée peinait à produire le déferlement aléaoire tant attendu. Or une équipe japonaise vient de résoudre cette épineuse difficulté en utilisant un ( en fait deux ) faisceau laser comme source que l'on réinjecte en partie dans le dispositif qui le génère. Si si ça fait un tsunami de hasard pur !L'article de FuturaSciences : Quand le laser devient générateur de nombres aléatoires
Lien permanent Catégories : Culture Générale, La Recherche, Mathématiques, Monde numérique 0 commentaire -
"La marche de l'ivrogne" à la pointe de la recherche
Jusqu'à présent, les travaux en physique statistique n'avaient permis de calculer le temps de premier passage que pour des systèmes à géométrie simple ou pour des milieux homogènes. Aujourd'hui, ces même chercheurs du Laboratoire de physique théorique de la matière condensée proposent une théorie qui permet d'évaluer le temps moyen de premier passage pour une très large classe de situations : le transport dans des structures fractales, des milieux désordonnés, des réseaux complexes (présentant de nombreuses connexions à partir d'un point donné, par exemple Internet) ou encore dans les cas de diffusion anormale (quand le déplacement quadratique moyen n'est pas proportionnel au temps). À la base de cette théorie se trouve une interprétation physique des termes des équations qui caractérisent ces situations. Cette interprétation a conduit les chercheurs à un modèle d'approximation. Résultat : ils ont montré que le temps moyen de premier passage dépend en fait simplement du volume du système et de la distance entre les points de départ et d'arrivée. Pour tester leur théorie, les chercheurs ont fait des simulations numériques sur les différentes classes de situations mentionnées plus haut. La théorie est en bon accord avec les temps réels observés.
Ils poursuivent maintenant leurs travaux sur les temps de réaction des biomolécules dans leur milieu, directement corrélés au temps de première rencontre entre réactifs.
Article du 31 octobre 2007 du CNRS : ICI
Un précédente note sur "la marche de l'ivrogne" : ICI
Votez pour cette note
-
Les mathématiques du Palais de la découverte
Le Palais de la Découverte de Paris nous propose plusieurs points d'accès aux mathématiques.
Le premier se fait au travers des formes mathématiques ICI et en ce moment de la présentation de la courbe du jour et de plus de 150 courbes algébriques transcendantes ou ornementales. Il est possible d'imprimer une fiche en format PDF de chacune d'entre elles avec un brève explication : ICI
On y trouvera aussi :
Montre-moi des théorèmes
Les origines des mathématiques se perdent dans la nuit des temps : architectes, commerçants, ou autres corporations, ont découvert très tôt, chacun dans ses domaines, des résultats mathématiques, des techniques, des recettes qu’ils se transmettaient oralement.
6 animations du théorème de Pythagore : ICI
Somme des angles d’un triangle sphérique
Nous avons tous appris, dès le plus jeune âge, que la somme des angles d'un triangle ... vaut 180°. Oui mais les astronomes et les navigateurs savent depuis longtemps que leurs droites sont souvent tracées sur une sphère ; un triangle sur la sphère s'obtient par intersections deux à deux de trois grands cercles, qui jouent sur la sphère le rôle que jouent les droites sur le plan. Quelle est alors la somme des angles d'un triangle ?
Planter des choux…Le deuxième point d'entrée est celui des Nombres ICI.
On y trouvera :
Autour du nombre pi
La longue histoire du nombre π commence bien avant qu'Euler ne rende populaire cette notation, due à William Jones, en 1706, bien avant que π (rapport du périmètre au diamètre d'un cercle) ne soit considéré comme un nombre. La quête du nombre π et de ses décimales accompagne toute l'histoire des nombres et de la compréhension des nombres entiers, décimaux, rationnels, irrationnels, algébriques, transcendants. π n'a-t-il qu'un nombre fini de décimales ? En a-t-il une infinité ?
Les palindromes.
Un palindrome est un mot qui se lit de la même façon de gauche à droite que de droite à gauche : RADAR, LAVAL Ce peut être aussi une phrase, mais alors on ne tient pas compte de ... -
Les fiches mathématiques du Soir
La liste des sujets des fiches mathématiques du Soir ( PDF ) : ICI
FICHE_60.pdf CQFM
FICHE_59.pdf Question
FICHE_58.pdf Référentiel
FICHE_57.pdf Conjecture
FICHE_56.pdf Mathémagique
FICHE_55.pdf Analogie
FICHE_54.pdf Essai et erreur
FICHE_53.pdf Google + ICI
FICHE_52.pdf Cryptographie
FICHE_51.pdf Arrondi
FICHE_50.pdf Binaire
FICHE_49.pdf Ordinateur + ICI
FICHE_48.pdf Boulier + ICI
FICHE_47.pdf Calculateur analogique
FICHE_46.pdf Machine de Turing
FICHE_45.pdf Règle à calcul
FICHE_44.pdf Différence
FICHE_43.pdf Bâtons de Napier + ICI
FICHE_42.pdf Loi des grands nombres
FICHE_41.pdf Binôme
FICHE_40.pdf Chaos
FICHE_39.pdf Statistique
FICHE_38.pdf Aléatoire + ICI
FICHE_37.pdf Probabilité
FICHE_36.pdf Attracteur
FICHE_35.pdf Factorielle
FICHE_34.pdf Complexité
FICHE_33.pdf Algorithme
FICHE_32.pdf Nombre premier
FICHE_31.pdf Progression
FICHE_30.pdf Fractal + ICI
FICHE_29.pdf Information
FICHE_28.pdf Projection
FICHE_27.pdf Tangente
FICHE_26.pdf Trochoïde
FICHE_25.pdf Dilemme
FICHE_24.pdf Paradoxe
FICHE_23.pdf Quantificateur
FICHE_22.pdf Barre de Sheffer ....... Vidéo : ICI
FICHE_21.pdf Syllogisme
FICHE_20.pdf Induction
FICHE_19.pdf Tiers Exclu
FICHE_18.pdf Lieu
FICHE_17.pdf Matrice
FICHE_16.pdf Intégrale
FICHE_15.pdf Optimisation
FICHE_14.pdf Dérivée
FICHE_13.pdf Fonction
FICHE_12.pdf Non Euclidien
FICHE_11.pdf Preuve
FICHE_10.pdf Hyperbole
FICHE_09.pdf Hypothénuse
FICHE_08.pdf Polyèdre + ICI
FICHE_07.pdf Graphes
FICHE_06.pdf L'infini
FICHE_05.pdf Nombres imaginaires
FICHE_04.pdf Le nombre e
FICHE_03.pdf Le nombre d'or + ICI + ICI + ICI
FICHE_02.pdf Zéro + ICI, ICI et ICI
FICHE_01.pdf Pi + ICI