Ok

En poursuivant votre navigation sur ce site, vous acceptez l'utilisation de cookies. Ces derniers assurent le bon fonctionnement de nos services. En savoir plus.

Simulations, modélisations - Page 5

  • Quel est le losange de côté donné et d'aire maximale? Réponse avec Casyopée

    J'aime beaucoup faire modéliser cette situation aux élèves qui éprouvent déjà d'énormes difficultés pour créer un losange "articulé" sur GeoGebra si l'on ne leur donne aucune indication, non pas sur le fonctionnement du logiciel, qu'ils connaissent pour la plupart, mais sur la façon de s'y prendre, de concevoir le  versant "dynamique". La démonstration manuelle en devient presque une libération lorsque l'on revient sur un chemin difficile mais mieux balisé.

    J'ai traité cet exercice avec le logiciel Casyopée qui m'impressionne. Les résultats algébriques sont découverts au fur et à mesure de l'avancée de l'exercice. Le logiciel permet de plus de réinvestir des stratégies de base. Il peut y avoir pour ce type de recherche une disparition presque complète de l'énoncé, l'élève arrivant à des résultats qu'il pourra (devra?) démontrer ultérieurement. Je vous laisse juge en parcourant l'animation suivante que vous pourrez retrouver directement dans votre navigateur ICI.

     

  • Casyopée, un logiciel formidable pour naviguer entre géométrie, fonctions et calcul formel

    Casyopée est un logiciel qui termine son développement et qui dispose dès maintenant d'une version stable. Il utilise le logiciel Maxima pour le noyau de calcul formel et offre parfois des menus qui ne sont pas très éloignés de ceux de GeoGebra. Il  a été conçu et créé par une petite équipe dont la base est constituée de trois personnes:

    • Jean-baptiste Lagrange, enseignant-chercheur à l’Université de Reims, membre du LDAR (Laboratoire de Didactique André Revuz, Université Paris Diderot),
    • Bernard Le Feuvre, professeur au lycée Cassin de Montfort (Ille et Vilaine),
    • Xavier Meyrier, professeur au lycée Maupertuis de Saint Malo (Ille et Vilaine).

    Le logiciel est libre et gratuit et pour se rendre compte des possibilités incroyables qu'il offre, il suffit de suivre l'excellent tutoriel pas à pas. Un wiki dispose déjà de quelques activités préparées pour les élèves.

    Je présente ici deux brèves vidéos non exhaustives de présentation des possibilités du logiciel:

    On pourra les visualiser directement dans le navigateur ICI et ICI.

     

    Calcul formel et bloc-notes:

     

    Géométrie, fonctions, étude de signe et de variation:

     

    Pour compléter:

    Casyopée conviviable sur SésaBlog

  • Qui est le meilleur joueur de tennis de tous les temps?

    Voilà une bonne question et si on la pose à M. Google voilà ce qu'il nous répond ou plutôt ce que les principaux utilisateurs de forums nous répondent.

    Bon allez, en fonction de la tête du joueur, de l'âge de celui qui répond et ses connaissances tennistiques on voit apparaître les noms de Nadal, de Federer, de Börg, de Mac Enroe, Wilander, Edberg  et cela seulement en consultant le premier lien précédent.

    J'ai toujours révé de me faire interroger sur la question par un vrai journaliste sportif. Ah, tiens je le vois arriver.

    Le journaliste sportif
    - Bonjour, vous êtes Webmaster des Inclassables Mathématiques et passionné de tennis.

    Moi
    - C'est ça oui.

    Moi (dans ma tête)
    - J'adore qu'on m'appelle Webmaster avec un W majuscule.

    Le journaliste sportif
    - Alors pour vous quel est le meilleur joueur de tennis de tous les temps?

    Moi
    - Personnellement, je dirai Jimmy Connors à cause de ça:

     

     

    Le journaliste sportif
    - Je vois qu'en fait vous êtes très attaché à Connors car c'est un excellent showman mais objectivement, rationnellement, rien ne vous permet de dire que Jimmy Connors est le meilleur joueur de tous les temps.

    Moi (dans ma tête)
    - Le journaliste ne doit sans doute pas savoir que je suis prof de maths et que je peux apporter des arguments mathématiques et rationnels.

    Moi
    - Il faudrait en fait que je vous explique comment faire une analyse du réseau complexe de l'histoire du tennis professionnel depuis 1968 mais je ne sais pas si vous vous sentez d'attaque (de coup droit bien sûr).

    Rires (en plus je fais rire le journaliste sportif, je suis aux anges...)

    Moi
    -Alors allons-y.

    Nous allons tout d'abord définir les conditions de l'analyse. Nous prendrons en compte les résultats de tous les matchs joués par les joueurs de tennis professionnels entre 1968 et 2010.  Tous les matchs du Grand Chelem et ceux intervenant dans le classement ATP seront pris en compte, soit au total 3700 joueurs, 3640 tournois et 133 261 matches.

    Si le nombre de tournois est assez régulier avec cependant des pics en 1980 et 1992 avec plus de 90 tournois par an, le nombre de joueurs ne cesse de décroître linéairement depuis 1996 et est passé de 400 environ à 300, comme l'indique le graphique suivant:

     

    sports,graphe,tennis,analyse,réseau

    Le graphique suivant indique la proportion de de joueurs ayant remporté ou perdu un nombre donné de matches. On voit que beaucoup de joueurs gagnent ou perdent peu de matches (en fait ils quittent les tournois rapidement. A l'autre bout, un petit groupe de joueurs (les meilleurs)  jouent beaucoup de matches qu'ils gagnent généralement contre les plus faibles et aussi entre eux qu'ils gagnent ou qu'ils perdent, connu sous le nom d'effet Matthew (les pauvres deviennent plus pauvres et les riches plus riches).

     

    sports,graphe,tennis,analyse,réseau

     

    Nous allons ensuite construire le graphe des rencontres. Il sera orienté (une flèche sera "tracée" à chaque victoire du joueur j vers le joueur i) et pondérée par le nombre de défaites du joueur j contre le joueur i.  

    Le graphique suivant est un sous-graphe extrait de celui de tous les joueurs concernant ceux qui ont été premier au classement ATP. L'intensité et la largeur d'une flêche sont proportionnelles au logarithme de son importance (poids).

     

    sports,graphe,tennis,analyse,réseau

    La représentation de ce résau peut être utilisée pour classer les joueurs en calculant pour chacun leur taux de "Prestige" dont la somme serait égale à 1. Celà n'est pas sans rappeler la méthode de calcul du PageRank pour classer les pages Web.

    Le prestige d'un joueur i représente la fraction de prestige totale de l'état d'équilibre du graphe dans un processus de diffusion. Pour expliquer en termes un peu plus simples, chaque nouveau résultat d'un matche modifie le "prestige" des deux compétiteurs puis par diffusion celui de tous les joueurs. Les mathématiques nous indiques que ce calcul converge vers un équilibre permettant de calculer le nouveau "Prestige" de tous les joueurs du graphes. Par exemple un joueur k qui  a gagné contre le joueur i qui vient lui même de remporter un matche contre un adversaire fort voit son prestige augmenter.

    Comme dans le cas du PageRank, il est nécessaire de fixer la valeur d'un paramètre (c pour le PageRank, q ici). La valeur a été choisie dans les deux cas.

    Le graphique suivant indique le prestige en fonction du nombre de victoires (jusqu'à 7) pour différentes valeurs du paramètre q. Le choix de 0.15 est "traditionnel" et équilibré.

    sports,graphe,tennis,analyse,réseau

    Plus le nombre de matchs gagné est grand plus le prestige est grand. Cependant, le nombre de match gagnés augmentant, le niveau de prestige doit être recalculé en implémentant une condition dite de normalisation, imposant qu'une quantité donnée soit constante. Elle permettra ainsi de définir un Prestige de référence a partir duquel tous les autres pourront être caculés. Cette condition impose que la somme des produits du nombre de victoires par le prestige pour chaque joueur soit égal à 1.

    Et le résultat est bien celui que je vous avais donné. Jimmy Connors est bien le meilleur joueur de tous les temps:

     

    sports,graphe,tennis,analyse,réseau,vulgarisation

     

    Le journaliste sportif
    - C'est certainement aussi celui qui a gagné le plus grand nombre de matches, c'est à dire dont la carrière a été la plus longue. Et les joueurs dont la carrière est terminée sont favorisés par rapport aux autres qui sont en cours de carrière. Alors pour ce qui est de la rationnalité de votre méthode de calcul permettez moi d'en douter.


    Moi (un peu embarassé par les arguments du journaliste)
    - Burp, c'est à dire que en fait... Vous voyez, il ne faut pas confondre le nombre de victoires et le prestige. Rafael Nadal par exemple serait classé 40 ème au nombre de victoires alors qu'il est à la 24 ème position dans notre classement. C'est aussi visible pour Björn Borg qui a eu une carrière plus courte que la moyenne et est cependant classé dans le top 10 de notre classement.
    Pour ce qui est de la carrière en cours d'un certain nombre de joueurs, vous avez remarqué qu'il y a un biais. On peut penser à un classement annuel qui diffère parfois du classement ATP et IDF.

     

    sports,graphe,tennis,analyse,réseau,vulgarisation

     

    Il est possible aussi de penser à un classement par type de surface qui donnerait Jimmy Connors gagnant pour l'herbe et Andre Agassi pour les surfaces dures. Si l'on considère le meilleur joueur des tournois en terre battue c'est Guillermo Villas.

    En faisant le calcul par décennie, Jimmy Connors est le meilleur pour les années 70, Ivan Lendl pour les années 80, Pete Sampras pour les années 90 et Roger Federer pour les anées 2000.

    Le classement par "Prestige" est donc une nouvelle forme de classement qui ne coïncide d'ailleurs pas toujours avec les classements techniques et qui permet en outre de faire des comparaisons sur des temps longs.

    Le journaliste sportif
    -
    Merci, je crois que j'ai tout compris, enfin la partie non technique. Vos inclassables mathématiques ont prouvé leur incroyable  efficacité et ont eu raison de mes inclassables joueurs de tennis.

    Moi
    -Si vous voulez de plus amples informations sur la partie technique de ces classements, je vous renvoie à l'article original de Filippo Radicchi publié sur ArXiv. Voilà c'est fini.

     

     

  • Toujours pas un as du dessin mais je me soigne...

    Voilà ce que j'ai réussi à faire en quelques minutes avec Scupltris sans rien connaître au logiciel... Alors imaginez en  une heure si vous êtes fort en dessin !
    Déformations, évidement, triangulation avant peinture, tout y passe avec une fluidité exceptionnelle.

     

     

    essai1.png

    Cliquez sur l'image pour agrandir.

     

  • Le dôme polyédrique

    Il s'agit d'un fichier Google Sketchup trouvé ICI

     

    dome1 [1600x1200].jpg

    dome2 [1600x1200].jpg