Ok

En poursuivant votre navigation sur ce site, vous acceptez l'utilisation de cookies. Ces derniers assurent le bon fonctionnement de nos services. En savoir plus.

Constructions - Page 20

  • Les maths votent Obama !

    Obama_Portrait_2006.jpgA quoi bon faire des élections si les modèles mathématiques prédisent tout. Etrange monde que celui dans lequel nous vivons qui créé à force de modélisation une seconde terre virtuelle ( et pourtant bien réélle ) mais modélisée mathématiquement. Des cracks financiers, sous-estimés à cause de l'inutilisation de modèles trop complexes, en passant par les divers scénarios de modification climatique, les opérations chirurgicales qui ne nécessiteront plus d'intervention humaine, jusqu'aux élections américaines, les modèles mathématiques sont partout. Ils permettent dans un cas de se déplacer avec une très grande précision dans la géométrie complexe du corps humain sans altérer les parois, de se projetter à la surface de la terre dans cent ans, de prévoir l'efficacité de nouveaux médicaments sur une maladie ou l'impact d'une campagne de vaccination sur le taux de cancer.


    Ici, un modèle mathématique remplace le vote de millions d'américains. Ce modèle qui a préditl e gagnant des élections américaines six fois de suite vote cette année pour Obama. Il résume presque le vote de l'Amérique toute entière à une simple formalité inutile et réduit l'espace politique à sa modélisation numérique.

    Le modèle du professeur Lichtman, élaboré en collaboration avec un mathématicien russe, Volodia Keilis-Borok, est construit autour de 13 variables, appelées « clés ». Ces dernières ont été déterminées à partir des résultats obtenus aux présidentielles de 1860 à 1980.

    Lichtman ironise même en affirmant :  « Les démocrates auraient pu tirer au hasard un nom d'un annuaire téléphonique et gagner la présidentielle cette année ». Extrait de l'article de Yahoo News.


    La modélisation s'infiltre dans tous les domaines, et cela ne peut que nous faire réfléchir de façon profonde sur la nature de notre société, car ici il ne s'agit plus seulement de sondages, mais de modèles autonomes permettant une prédiction alors que le sondage n'est quant à lui qu'une photographie à un instant donné. L'interprétation d'un sondage est d'autant plus aléatoire qu'elle est éloignée du moment du vote réel . Un modèle est beaucoup plus indépendant et s'il demande certainement quelques données d'ambiance, il ne se réduit pas à leur seule interprétation. Des variables principales, autres que les résultat d'un sondage avant les élections, ont été dégagées. Ce sont principalement de leur qualité, de leur indépandance et de la mécanique mathématique les reliant que dépendra la fiabilité d'un modèle.

    Mais un modèle , ça ne suffit pas, me direz-vous, pour pouvoir conclure. Qu'à celà ne tienne, puisque les principaux les modèles sont passés en revue dans cet article en Anglais, comme dans le cas du réchauffement climatique où plusieurs moèles et scénarios sont étudiés.

    La réponse est sans appel : 6 des 9 principaux modèles donnent Obama gagnant ! Et chose surprenante le modèle de Litchman -Volodia Keilis-Borok dont il est question dans l'article précédemment cité, n'apparait pas dans la liste. Il y aurait donc au moins 10 modèles ! Le modèle de Klarner prévoit même la composition de la chambre des députés et du Sénat.

    Serions-nous donc dans un nouveau monde où l'on attend avec impatience que les faits réels confirment ou infirment les prédictions des modèles? Une catastrophe viendrait alors avec un fait réel qui contredirait les prédictions et donc la stabilité des modèles utilisés. La référence dans ce cas ne serait plus la réalité ( y compris sociale et politique ) mais sa modélisation.

    Si cela vous inspire quelques commentaires.

  • Les blogs de maths au CNRS...

    image des maths.jpg

    "Images des mathématiques" est une revue publiée par des mathématiciens de haut niveau rassemblant des articles dont l’ambition est de faire connaître, de manière précise et attrayante, des mathématiques en train de se faire, à des lecteurs scientifiques, en particulier des étudiants en mathématiques. Les blogs de maths se sont tous fait écho de cette double publication en 2004 et 2006. Les archives sont disponibles article par article ICI.

    L'ancien site un peu désuet ICI s'est transformé en un site beaucoup plus dynamique ICI avec une publication d'articles associés à un code couleur suivant leur difficulté ( tiens j'ai déjà vu ça quelque part :) ), mais là il s'agit de descendre des pistes de ski de différentes couleurs. Pour l'instant elles sont vertes et bleues. J'espère que toutes les couleurs seront représentées et si je ne rechigne pas à me faire une petite noire au ski, je ne suis pas persuadé que mon niveau mathématique puisse me permettre une telle prouesse dans les pentes arides de cette discipline.

    On trouvera aussi les billets des habitués et une rubrique  "Portraits de mathématiciens". On trouvera celui du très surprenant "Magic Diaconis" qui est passé de la magie en cabaret...à une chaire d'excellence en mathématiques !

    Les blogs de maths n'ont pas été oublié et sont tous regroupés dans une catégorie "lien/blogs". C'est ainsi que je me retrouve tout près du lien pointant vers Alain Connes et Terry Tao. Et moi je dis où il y a de la gène, il n'y a pas de plaisir.

    Mon avis est que tout cela va dans le bon sens. Il semble que la communication autour des mathématiques commence à réellement prendre son envol. Il est important qu'elle soit considérée comme une composante fondamentale dans le regard que pourra porter le grand public à cette discipline d'ici quelques années. Elle devra être diversifiée et s'adresser à des publics très différents du néophyte au spécialiste en passant par  l'amateur averti.

    Les institutions de recherche et les universités se doivent de développer ces aspects afin que les "mathématiques" qui sont non seulement exigeantes et difficiles ne restent pas en plus invisibles ce  qui signerait presque leur arrêt de mort dans l'enseignement, d'autant plus que nous avons déjà vu que certains hommes politiques, y compris des scientifiques, peuvent franchir facilement le pas de l'extinction de l'espèce déjà presque en voie de disparition, sans beaucoup d'état d'âme!

  • Un 45ème nombre premier de Mersenne presque trouvé et peut-être un 46ème...

    Je vous avais annoncé la possible découverte d'un 45ème nombre premier de Mersenne dans une précédente note. Le premier des deux tests indépendants a vérifié la possible primalité de ce nombre. Il reste à attendre demain pour le résultat du deuxième et confirmer l'hypothèse.

    Mais le 6 septembre un autre nombre de Mersenne susceptible d'être premier a été découvert par les ordinateurs de Gimps... Réponse après-demain.

    On August 23rd, a computer reported finding a new Mersenne prime to the server! Because I was on vacation, verification did not begin until the 26th. Two verification runs were launched. The first independent verification with different hardware and software is complete and confirms the new prime! Estimated completion date for the second verification is September 10th.

    Amazingly, on September 6th, another computer claims finding a new Mersenne prime!! Independent verification has begun and should complete on the 11th.

  • Un 45ème nombre de Mersenne premier peut-être découvert

    Marin_mersenne.jpgUn nombre premier est un nombre divisible par 1 et par lui-même, comme 3, 5 , 7....

    Un nombre de Mersenne est un nombre entier de la forme:

    nombres de mersenne.jpg

    avec p premier :

     

    Les nombres de Mersenne fournissent de bons candidats pour les nombres premiers.

    Par exemple pour p=3, le nombre de Mersenne vaut

    7.jpg

    et il est premier.

    Mais pour p=11, le nombre de Mersenne vaut

    2047.jpg

    et n'est pas premier.

    En fait, l'humanité n'a pour l'instant trouvé "que" 44 nombres premiers de Mersenne, leur avantage étant qu'ils produisent les plus grands nombres premiers connus. Voilà le tableau des nombres de Mersenne connus à ce jour. Le plus grand est colossal et possède 9 808 358 chiffres.

    Lire la suite