Ok

En poursuivant votre navigation sur ce site, vous acceptez l'utilisation de cookies. Ces derniers assurent le bon fonctionnement de nos services. En savoir plus.

mathématiques - Page 58

  • D'Al-Khayyam à Descartes: sur les courbes

    Le sujet de cet article ( PDF ) de Roshdi Rashed, ICI,  est entièrement contenu dans le titre, et en guise d'introduction, je vous propose la... conclusion:

    La modernité mathématique au XVIIe siècle ne serait-elle alors qu’une reproduction de celle qui est advenue au XIe siècle ? Nullement. Serait-elle, comme on se plaît à l’affirmer, un commencement radical ? Non plus.

    Nous venons de montrer qu’une telle alternative n’est en fait pas pertinente : pour lire la Géométrie de Descartes, il faut aussi regarder en amont vers al-Khayyam et al-Tûsî et, en aval, vers Newton, Leibniz, Cramer, Bézout et les frères Bernoulli. Il en est de même s’il s’agit de situer l’Isagogè et la Dissertation de Fermat : un retour en amont à des écrits comme ceux d’Ibn al-Haytham et de Descartes s’impose en effet, de même qu’il faut avoir le regard dirigé en aval vers les Bernoulli, Cramer et Bézout. Alors seulement tous ces livres novateurs trouveront la place qui n’a jamais cessé d’être la leur. La Géométrie, par exemple, n’est nullement un commencement absolu, mais, au même titre que les autres oeuvres fondatrices, elle inaugure un style : celui d’une reprise, d’une adaptation et d’une rectification des traditions dont elle est l’héritière. Mais, comme ces oeuvres, elle ouvre la voie à d’autres évolutions – en géométrie algébrique, et aussi en géométrie différentielle. La modernité se présente ainsi comme la réalisation de quelques potentialités héritées de la tradition, en même temps qu’elle est génératrice de potentialités neuves pour le futur. Mais pouvait-il en être autrement ? Rien n’empêche, si l’on ne pense que par concepts tout faits, de soutenir que continuités et ruptures sont inscrites les unes dans les autres. Mais tout discours sur la Géométrie de Descartes, ou sur les deux livres de Fermat, est condamné à être oblique s’il néglige les liens intimes qui enracinent ces oeuvres dans la tradition, aussi bien que les nouveaux possibles qui les habitent, et qui devront attendre pour se réaliser effectivement que la modernité soit elle-même devenue tradition. La véritable force intellectuelle de J. Vuillemin est précisément d’avoir parfaitement appréhendé cette dialectique latente, alors que la tradition était encore si mal connue.


    Entretien de Roshi Rashed ( passionnant !) en PDF : ICI

  • Le festival des sciences de Chamonix - Le Monde est au risque ! - Sur les chemins de l'incertitude - Archives vidéo

    0da6f9af14f146bf606ae6e910c62f56.jpg17e Festival des Sciences


    LE MONDE EST AU RISQUE !
    Sur les chemins de l'incertitude...

    16-19 MAI 2007

    Les archives vidéo du festival sont en ligne : ICI

    J'ai regardé l'excellente intervention de Christian Walter : A l'épreuve du risque : finance et assurance et le non moins brillante présentation de Nicolas Bouleau " Quand le hasard fait sens "

    Quelques extrait de l'intervention de Christian Walter:

    "Un jour est comme mille ans"

    "En finance, il semblerait que beaucoup ( de titres ) ont très peu ( de performances ) et très peu ont beaucoup."

    "L'ensemble du marché est très calme sauf lorsqu'il bouge beaucoup"

    Et la question finale de Nicolas Bouleau:

    "Pourquoi la science n'accepterait-elle pas plusieurs interprétations ?"


    Si vous visionnez d'autres vidéos, n'hésitez pas à laisser votre avis en commentaire.

    Une précédente note sur" les marchés fractals" : ICI

  • Les bonnes palissades font les bons voisins : mathématiques et conflits ethniques

    Au  siècle dernier, plus de 100 millions de personnes ont péri dans un conflit violent, très souvent à cause de désaccords locaux entre groupes distincts ethniquement ou culturellement. Dans une étude inédite publiée récemment dans la revue Science, des chercheurs font état d'un modèle mathématique qui peut prévoir le lieu où un conflit ethnique éclatera.

    L'étude qui a été menée par des scientifiques du NECSI et de l'université de Brandeis, peut être appliquée à beaucoup de secteurs et ses prévisions ont été examinées sur des groupes ethniques distincts en Inde et dans l'ancienne Yougoslavie. Les chercheurs ont utlisé un modèle de formation  global qui différencie les régions par leur culture. Ils ont découvert que des secteurs hétérogènes avec des frontières mal définies étaient propices aux développement d'un conflit ethnique.
    Les recherches affirment que cela a lieu dans des régions fortement mélangées, où des groupes de même de nature ne sont pas assez importants pour faire basculer le comportement collectif ni suffisamment influants  pour occuper un espace public particulier; comme des groupes bien isolés qui seraient protégés par des frontières claires, identifiant leur espace, le feraient. L'étude conclut qu' « une séparation partielle avec des frontières mal définies encourage le conflit. »
    Comme le poète Robert Frost  a écrit dans une poésie bien connue, les « bonnes palissades font de bons voisins. » Des frontières bien définies favorisent la disparition de la tension ethnique.

    « Notre recherche prouve que la violence apparaît quand un groupe ethnique est assez important pour imposer des normes culturelles aux espaces publics, mais pas assez pour empêcher ces normes d'être rompues » précise Dr. May Lim chercheur de Brandeis. « Habituellement cela se produit dans les endroits où les frontières entre les groupes ne sont pas nettes. »

    Empruntant une nouvelle voie en sciences appliquées à la politique sociale, l'étude applique des principes scientifiques de la formation de modèles -- qui sont initialement employés pour décrire, par exemple, comment des produits chimiques se séparent suivant leur type ou la phase-- au problème social majeur du conflit ethnique. Les chercheurs ont découvert que la violence ethnique se produit dans certains modèles de prévision de la même manière que d'autres comportements collectifs dans des systèmes complexes physiques, biologiques, et sociaux.

    « Le concept de la constitution de modèle, alors qu'il a pu être développé à l'origine pour comprendre des systèmes chimiques, est vraiment un modèle scientifique de comportements collectifs, dans lesquels vous observez les différents aspects qui commandent le comportement global, » précise le co-auteur  et Président du NECSI, Yaneer Bar-Yam.

    « Cette étude fournit une indication des régions qui peuvent être destabilisées, et comment éviter un conflit" explique Yanner Bar-yam, précisant que « cette recherche est une  chance remarquable pour nous informer de façon approfondie sur des troubles sociaux avec de nouveaux outils scientifiques. »

     
    L'article original: ICI
    La note de MathTrek en anglais : ICI

  • Aspect historique de quelques notions d'analyse: le concept de fonction, les nombres réels, les limites, la continuité, la dérivée et l'intégration.

    Le document PDF, ICI, retrace en quelques pages l'aspect historique de quelques notions d'analyse. Il peut être utilisé dans l'enseignement et on y trouvera avec plaisir, pour le concept de dérivée ( seulement ), une comparaison entre l'approche historique et l'approche pédagogique.

    On pourra aussi consulter avec intérêt et pour compléter, les présentations Powerpoint et fichiers PDF d'André Ross sur l'histoire des mathématiques : ICI

  • Les courbes de Pierre Bézier ont redessiné le monde

    Une note de Design&Typo Le blog : ICI

    La visualisation des courbes de Bézier et des points de contrôle sur le Blog d'ABC Maths avec Geogebra : ICI