Ok

En poursuivant votre navigation sur ce site, vous acceptez l'utilisation de cookies. Ces derniers assurent le bon fonctionnement de nos services. En savoir plus.

livre - Page 3

  • Qu'est-ce qu'un livre peut offrir de plus qu'Internet ?

    Si l'on peut lire de nombreux articles sur les avantages et les progrès d'Internet en matière d'accès à l'information, on peut se demander à juste titre quels seraient les arguments pouvant faire préférer une recherche sur un livre plutôt que sur un site expert.
    Le contact des doigts sur le papier, le bruit des pages qui tournent sont irremplaçables, mais cela est d'un bien maigre poids devant la révolution numérique et ses hyperliens. Il est cependant nécessaire de s'interroger sur ce point, par exemple lorsque l'on rédige un livre de plus de 1000 pages sur les mathématiques tel que  The Princeton Companion to Mathematics. Le plus surprenant est que l'argumentaire apparaît dès la 5ème page de la préface de ce livre monumental qui doit lutter contre des sites  aussi importants que Wikipédia ou Wolfram MathWorld.

    Voici donc la traduction (personnelle) de la partie VII de la préface:

    " Qu'est-ce que Le Compagnon peut offrir qu'Internet ne peut pas offrir?"

    En quelques sortes, la figure du Compagnon est semblable à celle d'un grand site Web mathématique comme la partie mathématique de Wikipédia ou "Mathworld" d'Eric Weisstein. En particulier, les renvois ressemblent aux hyperliens. Ce livre est-il donc utile? A cet instant, la réponse est oui. Si vous avez-vous déjà essayé d'utiliser Internet pour découvrir un concept mathématique, vous devez déjà savoir que c'est une affaire au petit bonheur la chance. Parfois vous trouvez une bonne explication mais souvent ce n'est pas le cas. Les sites web qui viennent d'être mentionnés sont utiles pour trouver la matière qui n'est pas présente ici, mais au moment de l'écriture, ils ont été écrits dans un style différent de celui de ce livre: plus direct ( drier dans le texte ) et plus préoccupé à présenter les faits de base de façon épurée ( economical way dans le texte ) qu'à réfléchir dessus. On ne trouve pas de longs essais de ce type dans les parties I, II, IV, VII et VIII de ce livre. Certaines personnes trouveront aussi préférable  d'avoir l'ensemble de cette matière sous forme de livre. Comme il a déjà été mentionné, ce livre n'est pas organisé comme une compilation d'articles isolés mais avec un ordre soigneusement étudié qui exploite la structure linéaire dont souffrent les livres mais qui est absente des sites Web. La nature physique d'un livre confère une expréience complètement différente lorsqu'on le parcourt par rapport à un site Web. Après avoir lu la table des matières on accède au sens du livre entier alors que sur un grand site web, on ne prend conscience que de la page que l'on est en train de lire. Tout le monde ne sera pas d'accord avec cela, ou n'y trouvera d'avantage significatif mais d'autres le seront et c'est pour eux que ce livre a été écrit. Pour le moment, The Princeton Companion to Mathematics, n'a pas de concurrent en ligne sérieux: plutôt que de rivaliser avec des sites web, il les complète.

     

    Intéressant, non ?

     

    "tranches "de livres

  • C'est l'histoire d'un garçon qui rencontre une fille qui fait des maths

    Lancez la vidéo ICI, c'est tout mignon, la musique est adorable et s'il y a un traducteur qui passe par là !

    C'est en fait la vidéo de présentation corresondant à deux livres japonais :

    "Mathematical Girls"

    A Boy Meets Girls and Mathematics.

    Hiroshi Yuki

    Story: "I" am a high school student, who love mathematics. "I" meet beautiful girls in the high school. "I" and the girls enjoy not only the high school life, but also solving math problems! 

    "Mathematical Girls" books show the beauty of mathematics, the excitement of challenging hard problems, and happiness of discussing with friends. Beautifully typeset with LaTeX and the Euler Font. Suitable from junior high students to mathematicians.

     

     

  • Les métamorphoses du calcul : conférence audio de Gilles Dowek

    61ec51bc5099af5f689896c5741ac278.jpg

    Gilles Dowek est informaticien, chercheur et professeur à l’École polytechnique. Il a reçu le Grand Prix de Philosophie 2007 de l’Académie française pour les Métamorphoses du calcul, une étonnante histoire des mathématiques, paru aux éditions du Pommier en 2007.

    Socle même de la méthode mathématique depuis l’Antiquité grecque, la notion de démonstration s’est profondément transformée depuis le début des années soixante-dix. Plusieurs avancées mathématiques importantes, pas toujours connectées les unes aux autres, remettent ainsi progressivement en cause la prééminence du raisonnement sur le calcul, pour proposer une vision plus équilibrée, dans laquelle l’un et l’autre jouent des rôles complémentaires.

    Cette véritable révolution nous amène à repenser le dialogue des mathématiques avec les sciences de la nature. Elle éclaire d’une lumière nouvelle certains concepts philosophiques, comme ceux de jugement analytique et synthétique. Elle nous amène aussi à nous interroger sur les liens entre les mathématiques et l’informatique, et sur la singularité des mathématiques qui est longtemps restée l’unique science à ne pas utiliser d’instruments. Enfin, et c’est certainement le plus prometteur, elle nous laisse entrevoir de nouvelles manières de résoudre des problèmes mathématiques, qui s’affranchissent de certaines limites arbitraires que la technologie du passé a imposé à la taille des démonstrations : les mathématiques sont peut-être en train de partir à la conquête d’espaces jusqu’alors inaccessibles.


    Une conférence de 25 mns sur Canal Académie : ICI

    Ajout du 05/05/08 :

    Le dossier complet de Futura-Sciences " Les métamorphoses du calcul" : ICI
    Les cartes blanches "mathématiques" de Futura-Sciences : ICI

  • De très vieux brouillons d'écoliers : les tablettes mathématiques de Nippur

    Les tablettes mathématiques de Nippur sont de très vieux brouillons mathématiques d'écoliers!

    Vous trouverez les photos ICI. 


     
    982b0690e6da8263b17a5502820323aa.jpg


    Christine Proust a fait un travail énorme sur ces tablettes qu'elle a consigné dans un livre ICI.

    Ce livre, préfacé par Christian Houzel, présente une collection de tablettes mathématiques d’époque paléo-babylonienne (début du deuxième millénaire avant notre ère) qui ont été exhumées à la fin du XIX e siècle par une mission archéologique américaine sur le site de Nippur (Mésopotamie centrale). Ces tablettes sont aujourd’hui conservées dans les musées archéologiques d’Istanbul, de Philadelphie et de Iéna. Le lot d’Istanbul est entièrement édité dans cet ouvrage et dans le CD qui l’accompagne (photos, copies, transcriptions). Les tablettes mathématiques de Nippur sont principalement des brouillons d’écoliers. Sans doute considérées comme trop élémentaires, elles avaient jusqu’à une date récente peu attiré l’attention des épigraphistes et des historiens, et elles étaient restées ignorées dans les réserves des musées. Pourtant, les tablettes scolaires apportent de précieux témoignages sur la vie intellectuelle qui s’est épanouie à Nippur, la grande capitale culturelle de la Mésopotamie, et notamment sur la place qu’y occupaient la langue sumérienne et les mathématiques, dans leurs raffinements les plus abstraits. L’étude des textes scolaires mathématiques, en prolongeant celles qui ont été menées sur les textes scolaires lexicaux et littéraires sumériens, permet une reconstitution remarquablement détaillée du cursus de formation des scribes. Précisément parce qu’ils sont des textes d’apprentissage, ces modestes brouillons d’écoliers donnent accès aux conceptions originales en matière de métrologie, de numération et de calcul qui étaient inculquées aux jeunes scribes et qui donc contribuaient au fond culturel des milieux érudits. Par ailleurs, trois textes mathématiques savants, dont un texte inédit conservé à Istanbul, ont été retrouvés à Nippur. Leur contenu est particulièrement intéressant, car il concerne différents aspects du calcul des volumes et des racines cubiques. Si on les aborde selon les conceptions élaborées par les scribes eux-mêmes, telles qu’elles leur ont été enseignées, et non au moyen de nos outils algébriques et arithmétiques actuels, ces textes livrent toute la singularité et la finesse des mathématiques qui se sont développées à cette époque.

    La place du calcul dans l'enseignement, il y a 4000 ans : ICI

  • Sommes-nous réels ?

    La question semble saugrenue, on se demande même comment une telle idée est concevable . Mais à y regarder de plus près, l'évacuer d'un revers de main serait un peu léger car quelques arguments tirés d'un raisonnement solide militent en la faveur du fait que nous ne le soyons pas!

    Jean-Paul Delahaye nous les explique dans son excellent livre "Complexités", recueil d'articles qu'il a publié dans la revue "Pour la science".

    Comme à l'accoutumée, je vais reprendre les éléments principaux sans détailler le fond de l'article auquel je vous renvoie si le sujet vous intéresse.

    Nick Bostrom propose trois arguments dont la réfutation de deux d'entre eux entraîne nécessairement l'acceptation du troisième. Ces arguments s'appuient sur la notion de "société technologique arrivée à maturité".

    Une société technologique parvient inéluctablement à l'idée de "simulation" et de "modélisation". Cette idée semble naturelle, comme nous pouvons par exemple le constater en ce qui concerne le climat. Une fois l'idée de simulation acceptée, il semble aussi naturel d'accepter la notion de progrès de cette simulation dont l'horizon final serait d'être capable de simuler le comportement du cerveau de façon suffisamment fine pour arriver à ce qu'il coïncide avec le nôtre et que la simulation soit suffisamment autonome et bonne pour la rendre incapable de réaliser que s'en est une.

    Une société technologique arrivée à maturité est donc une société qui est parvenue au résultat précédent. Dans ce cas, le nombre de cerveaux simulés serait incomparablement plus grand que le nombre de "vrais cerveaux" qui les auraient simulés, une telle société utilisant très certainement tous les avantages de la simulation pour en tirer des conclusions sociologiques, historiques, économiques....


    Les 3 arguments de Nick Bostrom sont les suivants :

    Argument 1 : Toute civilisation technologique disparaît avant d'arriver à maturité.

    Argument 2 : Les sociétés technologiques arrivées à maturité abandonnent les simulations de grande précision incluant le cerveau humain.

    Argument 3 : Ma vie et mon environnement sont des illusions car je vis dans une simulation.

    L'argument 1 est difficilement acceptable et l'est d'autant moins que les progrès dans ce domaine avancent et que l'humanité n'a pas encore disparu.

    Accepter l'argument 2 va aussi à l'encontre du constat de ce qui est fait par l'homme jusqu'à maintenant et on a bien du mal à accepter l'idée d'un arrêt complet, brutal et arbitraire des progrès dans ce domaine!

    Il reste donc l'argument 3....

    L'article de Jean-Paul Delahaye est beaucoup plus dense et plus fouillé, il fait intervenir deux autres arguments ( que j'ai synthétisés et donc réduits).

    Argument 4 : La simulation d'un cerveau ne créé pas l'équivalent d'un cerveau.

    Argument 5: Il est impossible de créer une simulation si parfaite qu'aucun indice extérieur ne permettrait aux cerveaux simulés de s'apercevoir que s'en est une ( bug).

    L'argument 4 est contredit usuellement et naturellement par les religions, sa réfutation demandant de nécessairement de se placer dans le champ des arguments religieux. L'argument 5 peut être contredit si l'on considère que tous les comportement irrationnels et inexplicables des humains et des sociétés entières peuvent être considérés comme des bugs.

    Si vous refusez les arguments 4 et 5, il vous faut encore accepter l'argument 3....

    Ajout du 10/02/2010

    Avec l'aimable autorisation de JP Delahaye

    Sommes-nous réels ?