Ok

En poursuivant votre navigation sur ce site, vous acceptez l'utilisation de cookies. Ces derniers assurent le bon fonctionnement de nos services. En savoir plus.

Pour les parents - Page 13

  • Moteur de recherche Mathématiques Google

    J'ai créé un moteur de recherche personnalisé Google exclusivement dédié à des recherches de mathématiques. Je pense que le résultat est tout à fait satisfaisant. Vous trouverez aussi ce moteur dans la colonne de droite de ce blog. Il est destiné à tous, il contient de nombreux sites pédagogiques et institutionnels, des blogs, des sites scientifiques et mathématiques ainsi que wikipédia.

    Si vous cherchez une définition, tapez " define: " ( sans les guillemets ) puis le mot cherché.

    Vous pouvez intégrer ce moteur dans votre page personnalisée iGoogle. Il suffit pour cela d'ouvrir un compte Google.

  • Le bon boulot des sciences

    Paris capitale mondiale des mathématiques et de la mode, c'était ICI
    Pas plus tard qu'hier, je faisais une note intitulée " Inventer le marketing des mathématiques " dont le thème était principalement centré sur le luxe.

    Aujourd'hui, en lisant la BD destinée à promouvoir les métiers des sciences et réalisée par huit universités scientifiques françaises, je découvre que l'histoire traverse un laboratoire de cosmétiques d'une grande marque de luxe.

     85210fa593b69d1cd3dbc14068e612f1.jpg

    Voilà quelques extraits en images de cette BD de 25 pages : " Objectif Sciences, A la découverte des métiers scientifiques " " :

    3d0b0b7cdec4a6b1f1b8905858c4d2ba.jpg
    e335a1246c00823dc23fa2175d807833.jpgfa1c19811cd5e8a5e555a58f9a6e28c9.jpg
    f37d4ffd320030d7dba1b665d69b5fe5.jpg 
    9ed757b953b819a93b4f6a3664380edd.jpg
    5f048505481fcc284e9d3736aa7414c7.jpg
    d05444909014f45b910ef41fa6d39f13.jpg
     Pour l'intégralité en PDF c'est ICI
  • Les diplômes qui « marchent », un dossier du Point

    Oui, un diplôme est utile. Mais lequel ? Comment choisir ? Faut-il passer par une école pour être sûr de réussir ? Peut-on choisir d’abord une filière courte si l’on veut pousser ses études à bac + 5 ? Inégalitaire, complexe, le marché de l’orientation est tout sauf transparent. Notre enquête pour y voir clair.

    Faut-il croire encore aux diplômes ? Depuis plusieurs années déjà, la persistance d’un important chômage chez les jeunes, et notamment les diplômés, a forgé la conviction qu’à moins d’appartenir à une élite de super-cracks sortis des « grandes écoles » le diplôme n’est plus en France qu’un chiffon de papier. De nombreux ouvrages ont aussi accrédité la thèse que les diplômes étaient dévalorisés car trop généreusement octroyés, position que défend ainsi Jean-Robert Pitte, président de Paris-IV, dans son ouvrage « Stop à l’arnaque du bac » (Oh ! Editions, 2007). Entre les « égalitaristes » partisans d’une école garante de la démocratie, qui réclament un large accès à l’éducation supérieure et toujours plus de moyens au nom de l’égalité des chances, et les « élitistes », qui exigent un meilleur niveau des compétences à la sortie de l’enseignement supérieur et prônent plus de rigueur comme de sélectivité, le débat fait rage. Sur un point, tous sont d’accord pourtant : difficile de s’en sortir sans diplôme, même le plus modeste. Le fossé se creuse entre ceux qui ont appris un métier et ceux qui sont sortis les mains vides du système scolaire. Et même s’ils ne sont pas parfaits, les diplômes aujourd’hui se vendent plutôt bien. D’après une enquête publiée en septembre 2007 par l’Agence pour l’emploi des cadres (Apec), la situation des diplômés s’améliore. Trois jeunes sur quatre sont en poste moins d’un an après l’obtention de leur diplôme, contre trois sur cinq il y a un an. La durée de recherche a baissé : deux mois et demi en moyenne, et la moitié des jeunes a trouvé son premier emploi en moins d’un mois. Les spécialités aujourd’hui les plus demandées ? Les enseignants du primaire, les ingénieurs en informatique, les médecins, pharmaciens et autres professions médicales. Les mathématiciens ont aussi le vent en poupe, dans l’informatique comme dans les cellules de recherche et développement de la finance ou de l’industrie. Effet d’une conjoncture économique favorable, rétorqueront les pessimistes. Peut-être, mais à long terme l’évolution de la population française - départ à la retraite des enfants du baby-boom et arrivée sur le marché du travail de jeunes en moins grand nombre - est favorable à l’emploi des mieux formés. « La guerre des talents » prédite par le cabinet McKinsey il y a plus de quinze ans est en train de prendre pied en France : les entreprises sont à la recherche des meilleurs et sont prêtes à payer le prix.

    Gare aux erreurs d’aiguillage. Reste pour les étudiants à choisir la bonne formation. Gare aux erreurs d’aiguillage : même s’il existe de plus en plus de ponts entre les différentes formations, l’orientation est primordiale si l’on ne veut pas perdre de temps. Or elle est l’un des talons d’Achille du système éducatif français, avant comme après le bac. « Les jeunes arrivent au bac sans avoir choisi leur orientation. Ce qui explique le taux d’échec de 54 % en première année à l’université : un taux record en l’Europe », constate Nicolas Fellus, directeur des médias de Studyrama, société éditrice de guides étudiants. A l’Ecole des mines de Paris, l’une des plus prestigieuses écoles d’ingénieurs, le constat n’est guère différent. « Nos étudiants de première année ont 20 ans en moyenne, mais ils n’ont aucune idée de ce qu’ils veulent faire. L’un de nos premiers objectifs est de les faire mûrir afin qu’ils se connaissent mieux et qu’ils sachent ce que sont les entreprises. L’image qu’ils en ont est avant tout déterminée par le milieu familial », décrit Benoît Legait, son directeur. Et comme le souligne Martial Guiette, président du cabinet SMBG, spécialisé dans le conseil en orientation, le marché de la formation bénéficie d’abord à celui qui est informé, d’où, dès le départ, de très fortes inégalités « Ce marché est truffé de délits d’initiés ! Je vous rappelle qu’il n’y a qu’un conseiller d’orientation pour 3 000 élèves et, de toute façon, ceux-ci ne travaillent pas ou peu avec les professionnels. Résultat, on dit aux élèves que, s’ils sont bons, ils pourront faire ce qu’ils voudront. Et l’on oublie de leur dire que le monde de la formation est comme celui de l’entreprise : celui qui gagne est celui qui sait .»

    Beaucoup de jeunes se dirigent vers des métiers qu’ils idéalisent et dont ils ignorent complètement la réalité. Beaucoup aussi, particulièrement dans les classes populaires, renoncent avant même d’avoir essayé. Résultat, les « meilleurs » élèves, ceux qui remplissent les classes préparatoires et intègrent les écoles les plus prestigieuses, sont aussi ceux qui dès le départ savaient où et comment y aller. Ceux qui, souvent, ont été dressés dès l’enfance à gagner les concours.

    La suite de l'article du Point ICI

    Le reste du dossier ICI

  • Tu feras des maths mon fils : un dossier de education.france5

    9500df661bd68de6298ef02eb80c4868.jpgLe dossier très complet et très intéressant : ICI

    Avec en conclusion :

    La meilleure façon d’aider votre enfant à surmonter la peur des maths n’est évidemment ni de le culpabiliser ni de déclarer que vous n’y comprenez vous-même plus rien. Encore moins de répéter les lieux communs qui font croire que "les maths c’est difficile" et de tenir les matheux pour "des grosses têtes". La solution n’est pas non plus de lui faire faire des exercices en plus de ceux que le professeur a donnés.

    Considérer que les mathématiques usent d’un langage particulier mais aussi des mots de notre langue vous permettra de demander à votre enfant quelles sont les clés qu’il possède lui-même pour en décrypter le code et pour l’aider à y trouver du sens .


    Pierre Madiot, rédacteur aux Cahiers pédagogiques
    Avec la collaboration de Martine Belmont, professeur de mathématiques en collège et de Françoise Colsaet, professeur de mathématiques en lycée, coordinatrice du dossier N° 427 des Cahiers pédagogiques, "Enseigner les maths aujourd’hui".

    Source " Les cahiers pédagogiques " : ICI

    Extraits :  " Quelques unes des difficultés " : ICI

                   " Les cours de maths peuvent être vivants " : ICI

     

  • Conversation autour des "mathématiques à la maison"

    Entreprendre l'éducation de ses enfants à la maison est un choix possible. Un blog est consacré à l'aventure de Mi et Lou deux petites filles scolarisées chez elles. Lysalys, la maman, publie régulièrement des notes sur le sujet. Le 11 octobre, il s'agissait d'une note intitulée " L'illusion des mathématiques, le malentendu scolaire ". Ma curiosité me dirigea vers la lecture de cet article qui concernait en fait le résumé d'un livre portant le titre de la note. Vous trouverez l'intégralité de la note ICI . Quelques phrases m'ont interpellé ( mais je n'ai pas lu le livre ). Je n'ai pu résister une fois de plus à écrire un commentaire. Le premier a été avalé par Blogger, je ne le savais pas pas d'où la remarque suivante :

    Olivier
    Ce n'est pas très "pédagogique" de ne publier que certains commentaires et pas d'autres qui ont aussi tout leur intérêt! Dans tous les cas, je vous souhaite tous mes voeux de réussite dans votre mission éducative. A moins que vous ne l'ayez pas reçu, et dans ce cas, vous êtes toute excusée.

    Lisalys
    Bevery cool,
    En fait j'ai été très surprise de votre message parce que je n'ai modéré aucun de vos commentaires. La modération ici (lorsqu'elle est faite et cela est très rare) n'a pas pour objectif d'être sectaire, au contraire j'apprécie aussi les commentaires qui ne vont pas dans mon sens.
    Je modère seulement lorsque j'estime que les propos ne sont pas respectueux.
    Par contre je sais que les commentaires ne passent pas toujours et là je n'y peux malheureusement rien.

    Olivier
    Alors je vais reprendre mon commentaire, si vous le voulez bien. A la lecture de l'article, certaines idées m'ont paru fausses et parfois caricaturales. Je mets entre guillemets l'extrait et fait un bref commentaire après chacun.

    "J'ai finalement découvert peu de réponses pour le primaire, appris certaines aberrations qui finalement ne m'ont pas vraiment surprise, comme par exemple la notation au bac. Par exemple si le résultat est bon, la méthode est contrôlée, mais aucun risque qu'un raisonnement logique avec un résultat faux soit en partie encouragé..." est archi-faux, tapez "consignes de correction au baccaluréat" sur un moteur de recherche et vous verrez que dans toutes les matières, les consignes officielles prennent le contrepied de cette affirmation et appelle à la graduation.


    "L'idée principale de l'auteur : apprendre à raisonner." Franchement, que faisons nous à longueur d'année, nous les professeurs de mathématiques? si ce n'est de leur apprendre à raisonner et lorsqu'ils rencontrent trop de difficulté, on essaye de leur donner quelques recettes pour soulager un peu les plus laborieux.

    "De plus il est nécessaire de fournir à l'enfant un maximum d'outils afin qu'il puisse choisir celui qui lui conviendra dans un problème donné." connaître plusieurs outils suppose déjà que l'abstraction soit là, qu'ils en connaissent un et sachent lequel utiliser. Leur présenter différents outils est facile ! On aimerait aussi que nos petits mathématiciens en herbe soient de brillants bricoleurs qui fouinent dans leur boite à outils mathématique et trouvent la bonne clé, mais malheureusement en 15 ans de carrière cette situation idéale ne s'applique qu'aux élèves... les plus doués, les autres ayant déjà bien du mal à en choisir un qui convienne !

    "Elle met aussi en garde contre la formation des enseignants qui apprennent "comment enseigner" sans se demander "pourquoi"... " Celui qui à compris le "système éducatif" n'en est pas forcément meilleur et la question du "Pourquoi" est une question philosophique, mieux vaudrait se poser la question du recul par rapport à son enseignement, de sa valeur ajoutée personnelle, de l'importance de l'évaluation, de la mise en relief, des exemples et contre-exemples. Et réciproquement, celui qui n'a pas intégré toutes les finalités éducatives n'est pas systématiquement un mauvais pédagogue. Et j'aimerai trouver quelqu'un qui me donne une réponse satisfaisante au "pourquoi enseigner?" !

    "Par exemple, nous apprenons "Si une propriété est vraie au rang n, alors elle est vraie pour tout n" (suite numérique) tandis qu'en utilisant des sucres placés les uns derrière les autres et en poussant le premier, tous les sucres tombent. Il en ira de même si on ajoute un ou plusieurs sucres..." Cette phrase est "mathématiquement" fausse. Elle est à la base de ce que l'on appelle le raisonnement par récurrence qui se voit en ... Terminale S et que les élèves ont les plus grandes difficultés à saisir. En fait l'idée des sucres est très bonne pour montrer le phénomène global mais on est très loin du compte car il faut d'une part faire une initialisation de la propriété à démontrer et établir sa véracité au moins pour " un des sucres" on choisira le premier par exemple, le numéro 1, car si elle n'est pas vraie au moins une fois, on peut toujours démontrer ce que l'on veut derrière. Ensuite on suppose la propriété vraie pour un sucre "n" quelconque puis on la démontre pour le sucre suivant "n+1" et ensuite on peut conclure qu'elle est vraie pour tous les sucres du monde, de l'univers, en s'imaginant si l'on veut qu'ils se font tous tomber à partir du premier! Je peux vous garantir que n'importe quel élève à qui l'on enseigne le raisonnement par récurrence vous expliquera que la difficulté n'est pas dans la chute des sucres ou des légos mais dans la "puissance" et la difficulté du raisonnement, de ses étapes obligées et de la démonstration centrale.

    En aucun cas ne prenez ces remarques comme des critiques personnelles à votre égard, mais ma position est que le métier d'enseignant est suffisamment difficile et complexe pour que des caricatures faciles et des lieux beaucoup trop communs ne viennent se greffer sur le discours ambiant pour justifier tel ou tel discours. Si c'était si simple que cela, ça se saurait certainement, non ?

    Sur ce, je vous réitère mes voeux de réussite dans l'éducation de vos enfants et vous êtes la bienvenue sur mon blog exclusivement réservé.... aux mathématiques.

    Au plaisir. Et j'espère que ce long commentaire ne va pas disparaitre dans les abymes numériques de blogger.

    Lisalys
    Bevery cool,
    Je vous remercie de votre commentaire très complet.
    En ce qui concerne l'exemple des sucres, il était simplifié bien sûr. Il ne s'agit pas de tout résumer par cet exemple, mais simplement de visualiser une situation pour ensuite réfléchir à partir de celle-ci (c'est en tout cas ainsi que je l'ai compris).
    En fait l'auteur a choisi de s'adresser à un large public et de mon côté j'ai encore supprimé bon nombre de réfèrences mathématiques parce que je crois qu'un allergique aux maths risquerait très vite de décrocher. ;)Mais peut-être ai-je trop pensé "à la place de..."

    En ce qui me concerne, je n'ai pas de problèmes avec les enseignants. J'ai même gardé une tendresse particulière pour un de mes profs de maths, un homme qui a su me permettre de faire des maths autrement. Alors oui, je le redis ici : il est possible de faire des mathématiques avec de bons profs.

    Mais je pense encore que l'école n'apprend malheureusement pas assez à raisonner et cela je l'ai malheureusement constaté avec ma fille et je vous assure que depuis qu'elle fait des maths avec les frères lyons (méthode fondée sur la pratique et le raisonnement), son esprit se libère bien plus.

    Je vous remercie de vos "voeux de réussite", même si ce n'est pas tout à fait le terme que j'aurais employé. ;)
    Quant à votre blog, je suis allée vous faire une petite visite et je n'exclue pas d'y retourner. Tout ce qui peut nous faire avancer mieux sur notre chemin est pour moi bon à découvrir.

    Olivier
    Il n'y avait aucune ironie dans le terme " mes voeux de réussite " puisque je pense que cest le meilleur que l'on puisse vous souhaiter ainsi qu'à vos enfants car l'essentiel c'est quand même eux !

    Je ne suis toujours que très partiellement d'accord avec vous sur le " apprendre à raisonner " car je pense que le raisonnement n'est qu'un élément parmi d'autres de l'activité mathématique et comme vous le précisez vous même il y a aussi l'expérimentation. On peut citer de même l'étonnement, la découverte, l'intuition, l'intérêt, les prédispositions au maniement des nombres, l'aisance du passage à l'abstraction, la capacité de lecture, la mémorisation, la comparaison, l'évaluation, la précision, l'acceptation de la soumission aux règles, l'acceptation de l'erreur, le changement de stratégie, la capacité de développer, d'argumenter, d'émettre une hypothèse, de comprendre la nécessité de la démonstration pour le passage à l'Universel, la compréhension de la nécessité de l'entrainement etc, etc et je dois en oublier environ un millier...

    Je n'ai pas encore entrepris de dresser une liste des compétences mises en oeuvre dans l'activité mathématique
    mais je pense que c'est certainement la matière qui en contient le plus et nous allons encore en rajouter avec la mise en place de l'épreuve expérimentale au bac en S utilisant l'outil informatique.

    Comme dans toute discipline on ne peut exclure les compétences personnelles qui font de cette matière un réactif très sensible à l'âge auquel telle ou telle notion est abordée. Pour ma part et c'est un avis personnel, dans le cas d'enfants en bas âge je préconise la répétition et la mémorisation rassurantes pour l'enfant et je dirai que plus qu'à l'enfant de raisonner c'est à l'adulte de lui expliquer ses propres mécanismes de compréhension et de raisonnement. Toujours en ce qui me concerne, mon fils a appris les tables de multiplication en m'entendant lui expliquer comment est-ce que moi je faisais pour me les rappeler, ce qui était facile pour moi, plus difficile. Lorsqu'il ne se rappelait plus je lui expliquait comment "moi" je savais à ce moment là, quels mécanismes se formaient dans mon esprit et il n'y a pas eu de récitation des tables simplement une sorte de "récitation" de plus en plus automatique et volontairement désordonnée au fil des jours.

    Je ne sais pas s'il s'agit d'une "méthode" mais elle illustre au plus près la pensée que j'ai de l'acte d'enseignement.

    Répétition et compréhension des mécanismes de "l'autre" feront la conclusion de cette note, je pense que le raisonnement est postérieur.

    Lisalys
    Ah mais je n'y voyais aucune mauvaise intention de votre part, il s'agissait davantage d'une façon de concevoir l'instruction avec mes enfants dans le sens où pour moi il s'agit avant tout d'épanouissement et que pour moi, "réussite" pouvait avoir une connotation de pression. ;)

    Quant à votre nouveau commentaire, je suis d'accord avec un certain nombre de points soulevés et on vous sent passionné de mathématiques. Cependant je prends un exemple simple : celui d'aujourd'hui. Avec les enfants nous avons étudié l'apprentissage des multiplications, divisions par l'intermédiaire de rectangles (méthode des frères lyons). Lou n'a eu aucun souci puisqu'elle n'avait aucune connaissance dans ce domaine, elle a parfaitement compris comment cela fonctionnait. Par contre Mi a absolument voulu commencer par réciter et trouver la solution et elle s'est totalement emmêlée les pinceaux. Bonne élève à l'école pourtant dès qu'il s'agissait du par coeur... Une situation nouvelle avec un mécanisme différent l'a totalement déstabilisée et dans ce cas, je crois davantage à l'obstacle cognitif qu'à une histoire de tempérament.
    C'est pourquoi nous retravaillerons ces domaines mais de différentes façons (répétition mais aussi outils différents).

    Olivier
    Je suis d'accord avec vous sur la pertinence de votre exemple mais je n'irai pas jusqu'à l'interpréter en termes de compréhension et de non compréhension. La compréhension de Lou peut en effet être une compréhension sur l'instant, ce qui n'implique pas nécessairement que dans un autre contexte ou sous une autre formulation le principe soit retrouvé. A contrario, ce n'est pas parce que Mi s'emmêle les pinceaux quand elle tente de réciter quelque chose de complexe, qu'elle n' pas compris. Elle est peut-être en même temps en train de construire des règles durables afin qu'elle puisse les réinvestir partout. Les débuts hésitants peuvent être ceux de l'installation d'une démarche complexe.
    La déstabilisation importante qu'elle a rencontré était jpeut-être due à "l'effondrement" de ce mécanisme qui s'initiait et retrouver dans cette situation de stress les résultats de la "récitation" s'avéraient pour le moins difficile et ne pouvaient qu'être "hésitants!

    Ce matin, un élève de seconde venait de faire des exercices corrects pendant une demi-heure et butait sur les derniers,il me demanda comment faire pour poursuivre celui qui le bloquait. je lui est dit qu'il suffisait de diviser par 3 et lui ai demandé combien faisait -9/3...il était perdu, j'attends d'ailleurs toujours la réponse que j'ai fini par lui donner. Je ne doute pas un instant qu'il connaissait le résultat. Il en est souvent de même lorsque les élèves passent au tableau.

    Acceptez-vous que cette conversation soit recopiée sur mon blog avec un lien pointant sur cet article ?

    Lisalys
    En fait la situation n'était pas totalement nouvelle pour Lou puisque ce n'est pas le premier exercice du genre et qu'elle a réinvesti ce qu'elle avait déjà fait (donc processus apparement compris).
    Par contre, il est vrai (et cela malheureusement il m'arrive encore de l'oublier) que l'enfant passe parfois par des étapes qui semblent de régression alors qu'en fait il travaille à les mémoriser, les ordonner pour ensuite les maîtriser. Cependant pour connaître ma puce, je sais aussi qu'elle est intelligente, mais était aussi très timide notamment à l'école (tout comme votre exemple cela lui a souvent fait perdre ses moyens et nous avons encore parfois ces petites reminiscences), ce qui fait qu'elle a retenu une leçon (une règle par exemple), mais sans rien comprendre du fonctionnement de ce qu'elle a retenu et ce n'est malheureusement pas la première fois qu'elle a ce souci (cas de la lecture par exemple où j'ai dû tout reprendre en ce1 tant elle peinait et où une fois tout compris, elle a su lire en quinze jours...). C'est pour cela que je tiens à leur apprendre tout d'abord à penser par elles-mêmes.

    Si vous le souhaitez, vous pouvez faire paraître cette discussion sur votre blog.

    Et voilà qui est fait.