Ok

En poursuivant votre navigation sur ce site, vous acceptez l'utilisation de cookies. Ces derniers assurent le bon fonctionnement de nos services. En savoir plus.

Mathématiques - Page 9

  • La semaine des maths 2014 est ouverte

    semaine_maths_2013_affiche_239124.54.JPGMontrer les mathématiques sous un jour nouveau, ludique, concret et dynamique, en présenter les innombrables facettes et débouchés pour donner envie aux élèves de faire des maths et encourager des vocations : tels sont les objectifs de la semaine des mathématiques, qui se déroule du 17 au 22 mars 2014, sur le thème Mathématiques au carrefour des cultures.

    Cette semaine valorise les actions éducatives menées dans le champ des mathématiques aux niveaux académique et national.

    http://www.education.gouv.fr/cid59384/la-semaine-des-mathematiques.html

    Allez, un peu de pub pour mon Académie

     

  • Super Computor: un entrainement cérébral addictif et distrayant

    Le principe est simple: relier le plus vite possible, quelques chiffres pour que leur somme ou leur produit soit égal à celui qui est indiqué.

    L’application propose de résoudre un maximum d'additions et de multiplications en un temps record et d’affronter des joueurs du monde entier afin d’accéder au titre convoité de TermiMathor ! Via cette application à portée éducative, l'utilisateur adulte stimule son cerveau et le maintient affûté tandis que les plus jeunes découvrent le calcul de manière ludique. L'application est disponible gratuitement sur iOS, Android et navigateur web aux liens suivants: Appstore : http://bit.ly/NyPuhD Google Play : http://bit.ly/1iLvm6h

     

     

    Ce jeu a été développé avec succès pour Bull par Heliceum.

    Allez, suivez-moi, j'y retourne. 1500 points pour débloquer le 3ème mode "addition et multiplication". J'ai vu les Top scores... Je suis encore bien loin d'être un Thermimathor!

     

    For_iphone_itune_02_FR.png

     

    For_iphone_itune_01_FR_EN1.png

  • Cherche avis d'expert: Bastien a tenté de répondre à la question suivante sans avoir fait le cours...

    Dans le cadre de travaux en temps libre, je propose des énoncés que les élèves sont libres de choisir. depuis quinze jours, j'ai mis à disposition tous les énoncés. Les élèves peuvent donc théoriquement choisir n'importe quel problème. Je pensais que les élèves allaient se diriger exclusivement vers les notions précédemment abordées... mais ce n'est pas le cas.

    Bastien, en Première S, a choisi de traiter "à sa façon" le problème suivant sans avoir vu le chapitre concernant la loi binomiale, ni tout simplement de probabilités.

    Un QCM comprend dix questions auxquelles on répond par « Vrai » ou « Faux ». Un élève répond au hasard à toutes les questions.

    A-t-il autant de chances de répondre exactement à trois questions qu’à sept ?

    Mais encore ? 

    Cette situation est nouvelle pour moi et je ne sais pas quoi en penser, ni d'un point de vue pédagogique (doit-on encourager ce genre de production?), ni d'un point de vue didactique (cette production est-elle mathématiquement intéressante?). 


    Je demande donc l'avis d'experts.

    Voilà sa production.

     

  • On manque d'aire ou pas? Travail de Théo - Première S

    J'ai mis en place cette année un nouveau concept pour les travaux maison. Las de corriger des copies parfois similaires, j'ai lancé l'idée de travaux facultatifs obligatoires. Parmi une liste assez vaste de problèmes de difficultés très variées, les élèves doivent, avant une date fixe, me rendre leurs productions. Mon évaluation, plutôt par compétences, prend en compte la qualité du traitement, mais aussi la diversité des choix, la difficulté des exercices et les prises d'initiatives.

    Parmi les sujets, il y avait celui-ci :

    Capture.GIF

    Et parmi les productions, il y a celle de Théo (fichier GeoGebra envoyé via Edmodo et rédaction de la solution), qui n'a d'ailleurs pas rendu que ce problème.

    A noter: les limites de suites n'ont pas été traitées en cours (sauf une allusion) et j'ai juste mis à disposition des élèves ma playlist Geogebra sur YouTube dans laquelle on peut trouver quelques tutoriels du logiciel, dont celui concernant les cases à cocher.

    Compte tenu de mon absence d'intervention et de l'énoncé laconique, je trouve la production suivante exemplaire.

     

     

    theo1.jpg

    theo2.jpg

     

    theo3.jpg

    theo4.jpg

     

     

     

  • Un défi de taille pour l'éducation

    Un défi essentiel pour l'éducation est donc de prendre en compte la manière dont les gens réussissent à contourner tout besoin d'encodage formel des situations en se fiant à ce que leur disent leurs catégories familières, construites pendant des années d'interactions quotidiennes avec le monde qui les entoure. Si tout enseignant a parfaitement conscience que l'"habillage" d'un énoncé peut modifier profondément sa difficulté, le défi de faire de l'habillage un levier d'apprentissage doit encore être relevé. L'enjeu est de taille, et le défi loin d'être simple.

    Cette citation est extraite de l'excellent livre L'Analogie Coeur de la pensée de Douglas Hofstadter et d'Emmanuel Sander.

    Elle conclut en page 523, un paragraphe qui aborde l'énoncé de deux problèmes dont les opérations et le résultat sont identiques. Seulement le premier est résolu par presque tout le monde avec trois opérations, alors que le second en appelle généralement une seule. Les auteurs y voient une différence d'encodage de la situation qui aboutit in fine à une différence sensible de traitement.

    Testez par vous-même en résolvant les deux problèmes suivants:

    Premier problème:

    Laurent achète une trousse à 7 € et un classeur. Il paie 15 €. Jean achète un classeur et une équerre. Il paie 3 € de moins que Laurent. Combien coûte l'équerre?

     

    Second problème:

    Laurence a suivi des cours de danse pendant 7 ans et s'est arrêtée à 15 ans. Jeanne a commencé au même âge que Laurence et s'est arrêtée 3 ans plus tôt. Combien de temps Jeanne a-t-elle suivi ses cours de danse?

     

    Le schéma pour le problème des achats est naturellement associé à un diagramme de Venn. Il incite à calculer le prix du classeur, achat commun aux deux, avant de répondre à la question posée.

    Le schéma pour le problème de la danse est plutôt un axe temporel dont l'origine serait la date de début des cours. Il suffit donc de s'imaginer la différence des durées des deux cours pour répondre à la question.

    La structure commune serait celle de deux rectangles de même base (correspondant à l'origine des prix ou des âges), superposés et de hauteurs différentes, dont une partie serait commune (le prix du classeur ou l'âge auquel Jeanne (et Laurence) ont commencé à faire de la danse. 

    Les deux problèmes peuvent être résolus avec la même opération 7-3. Il est donc faux de penser que la difficulté d'un problème est celle de la difficulté du calcul qu'il mobilise. Elle est en partie due à l'encodage de la situation qui impacte directement sur la résolution du problème.