Ok

En poursuivant votre navigation sur ce site, vous acceptez l'utilisation de cookies. Ces derniers assurent le bon fonctionnement de nos services. En savoir plus.

Livres et lettres - Page 28

  • Le sens de la formule

    Un chat avec un citron vert sur la tête m’a posé par Ax+B=0 une drôle de question. Etant donné mon prénom, les Math(s) ne sont ni plus ni moins que ma problématique existentielle. Matheux, Matthieu ? Lettre ou ne pas l’être telle est l’équation… à plusieurs inconnues.

    Or, on m’a toujours appris à ne pas développer(-couché) avec des inconnues. A l’école, j’étais polygone, plutôt bon sur tous les côtés et même en géométrie j’avais le compas dans l’oeil, mais en quatrième ce fut un virage à angle droit. J’ai commencé à voir les maths sous un angle plus obtus ou, si vous préférez, sous le prisme utilitaire du : “Et puis d’abord, à quoi ça sert ?”...

    La suite ICI sur le blog Frenchmat

  • Bertrand Russel

    Les équations n'explosent pas.


    The Observer 1970

    D'autres citations de Bertrand Russel : ICI

  • Les mathématiciens par Alexandre Grothendieck

    La plupart des mathématiciens, je l’ai dit tantôt, sont portés à se cantonner dans un cadre conceptuel, dans un "Univers" fixé une bonne fois pour toutes - celui, essentiellement, qu’ils ont trouvé "tout fait" au moment où ils ont fait leurs études. Ils sont comme les héritiers d’une grande et belle maison toute installée, avec ses salles de séjour et ses cuisines et ses ateliers, et sa batterie de cuisine et un outillage à tout venant, avec lequel il y a, ma foi, de quoi cuisiner et bricoler. Comment cette maison s’est construite progressivement, au cours des générations, et comment et pourquoi ont été conçus et façonnés tels outils (et pas d’autres. . . ), pourquoi les pièces sont agencées et aménagées de telle façon ici, et de telle autre là - voilà autant de questions que ces héritiers ne songeraient pas à se demander jamais. C’est ça "l’ Univers", le "donné" dans lequel il faut vivre, un point c’est tout ! Quelque chose qui paraît grand (et on est loin, le plus souvent, d’avoir fait le tour de toutes ses pièces), mais familier en même temps, et surtout : immuable. Quand ils s’affairent, c’est pour entretenir et embellir un patrimoine : réparer un meuble bancal, crépir une façade, affûter un outil, voire même parfois, pour les plus entreprenants, fabriquer à l’atelier, de toutes pièces, un meuble nouveau. Et il arrive, quand ils s’y mettent tout entier, que le meuble soit de toute beauté, et que la maison toute entière en paraisse embellie. Plus rarement encore, l’un d’eux songera à apporter quelque modification à un des outils de la réserve, ou même, sous la pression répétée et insistante des besoins, d’en imaginer et d’en fabriquer un nouveau. Ce faisant, c’est tout juste s’il ne se confondra pas en excuses, pour ce qu’il ressent comme une sorte d’enfreinte à la piété due à la tradition familiale, qu’il a l’impression de bousculer par une innovation insolite.

    Dans la plupart des pièces de la maison, les fenêtres et les volets sont soigneusement clos - de peur sans doute que ne s’y engouffre un vent qui viendrait d’ailleurs. Et quand les beaux meubles nouveaux, l’un ici et l’autre là, sans compter la progéniture, commencent à encombrer des pièces devenues étroites et à envahir jusqu’aux couloirs, aucun de ces héritiers-là ne voudra se rendre compte que son Univers familier et douillet commence à se faire un peu étroit aux entournures. Plutôt que de se résoudre à un tel constat, les uns et les autres préféreront se faufiler et se coincer tant bien que mal, qui entre un buffet Louis XV et un fauteuil à bascule en rotin, qui entre un marmot morveux et un sarcophage égyptien, et tel autre enfin, en désespoir de cause, escaladera de son mieux un monceau hétéroclite et croulant de chaises et de bancs. . .

    Le petit tableau que je viens de brosser n’est pas spécial au monde des mathématiciens. Il illustre des conditionnements invétérés et immémoriaux, qu’on rencontre dans tous les milieux et dans toutes les sphères de l’activité humaine, et ceci (pour autant que je sache) dans toutes les sociétés et à toutes les époques. J’ai eu occasion déjà d’y faire allusion, et je ne prétends nullement en être exempt moi-même. Comme le montrera mon témoignage, c’est le contraire qui est vrai. Il se trouve seulement qu’au niveau relativement limité d’une activité créatrice intellectuelle, j’ai été assez peu touché par ce conditionnement-là, qu’on pourrait appeler la "cécité culturelle" - l’incapacité de voir (et de se mouvoir) en dehors de l’ "Univers" fixé par la culture environnante.

    Extrait de Récoltes et Semailles d'Alexandre Grothendieck

  • De retour de vacances : Racine de 2, Grothendieck et Bourbaki

    7a66b0a3fbc6cc4b43796727d4e4ab81.jpgAprès quinze jours passés près de Saint-Tropez, plus exactement à Gassin, petit village adorable, perché à flanc de montagne  qui domine le golfe de Saint-Tropez, me voici de retour à la maison. Durant le trajet qui mène de la Croix-Valmer aux iles de Port-Cros et de Porquerolles, j'ai pu longuement méditer sur les yatchs de luxe et les villas surplombant la mer. Un propriétaire a même construit un funiculaire pour relier son habitation à la grande bleue... et je me suis dit que ni les bateaux, ni les villas, ni les funiculaires n'auraient intérêt à hériter d'un propriétaire comme moi !

    Alors je me suis replongé tranquillement dans mes lectures estivales, allongé sous le soleil et le mistral, badigeonné de crème  indice 40, ce qui m'a permis de passer totalement inaperçu parmi les touristes nouvellement arrivés !

    Au programme, j'ai lu l'excellent livre de Frédéric Patras : "La pensée mathématique contemporaine" qui dresse son état des lieux en sept chapitres :
    Le style en mathématiquesea4dd0cb3ecc4b64d583d9da979b5b06.jpg
    De Platon à Husserl
    Des origines des mathématiques modernes
    Axiomes et intuitions
    Le courant structuraliste
    Structures et catégories
    Les demeures de la pensée
    A la rencontre du réel

    Frédéric Patras analyse avec beaucoup de finesse et de profondeur les apports de Bourbaki, tant en termes positifs que négatifs ainsi que leur incidence sur la difficile succession après cette période clé de la vie des mathématiques françaises. Il nous présente aussi l'oeuvre méconnue de 1000 pages d'Alexandre Grothendieck,
    Récoltes et Semailles, dont les 100 premières pages ont aussi fait l'objet d'une lecture attentive.

    " Penser avec Grothendieck " quelques citations pdf : ICI

    3ce31fcf1643f72d90e57fa00687d5c2.jpgJ'ai presque terminé " Le fabuleux destin de racine de 2 " par Benoit Rittaud qui nous transporte de 1900 avant notre ère grâce à la tablette babylonienne YBC 7289 sur laquelle on trouve la présence de ce nombre avec la précision étonnante de 7 décimales jusquaux calculs par 11c0d93e40cf205968c21d569364f4d2.jpgordinateurs les plus récents, soit en tout plus de 400 pages de voyage dans l'espace et dans le temps autour de ce nombre qui n'a pas à palir devant les succès médiatiques de Pi et du nombre d'or.

    La vidéo de la conférence de Benoit Rittaud et de nombreuses ressources sont  disponibles sur le site:

    Le Fabuleux destin de √2 .

  • Bourbaki, Gödel, les mathématiques et la philosophie

    En marge de la théorie des structures, les idées bourbakistes sur les fondations ont été critiquées violemment par un logicien, A. Mathias. Son attaque rejoint partiellement les réserves que l'on peut émettre à propos de l'idée de structure : Bourbaki n'aurait jamais vraiment pris au sérieux la logique ou l'épistémologie. Mathias dénonce les approximations concernant le système de Zermelo-Fraenkel ou la trop longue incompréhension des résultats de Gödel. Sous sa forme la plus extrême, l'attitude de Bourbaki sur ces questions est caractérisée par une description restée célèbre de Dieudonné :

    « En ce qui concerne l'attitude de Bourbaki vis-à-vis du problème des "fondations" : elle est décrite au mieux comme une indifférence totale. Ce que Bourbaki considère comme important est la communication entre mathématiciens ; les conceptions philosophiques personnelles n'entrent pas en compte pour lui ».

    Il faut aujourd'hui en finir avec de telles positions de principe. Si l'échec du programme structuraliste se traduit par la nécessité de rendre au concept de structure sa fonction téléologique sans essayer de le figer en une notion mathématique formalisée univoque, les tra­vaux de Gödel montrent, pour ce qui est des fondements, les limites de la stratégie consistant à se satisfaire d'un système de type Zermelo-Fraenkel, et à se désintéresser de la métamathématique. Nous incluons dans celle-ci les vues synthétiques et prospectives, comme la recherche des concepts originaires d'une discipline, recherche qui n'est pas du ressort direct de la mathématique formalisée. En d'autres termes, pour aller aujourd'hui au-delà de Bourbaki, il faut en finir avec un discours pragmatique et restaurer, aux côtés de la recherche, le débat philosophique. La mathématique a tout à y gagner : c'est pour elle le seul moyen de reconquérir une audience. Les succès médiatiques de la physique, sa concurrente immédiate dans le panthéon des sciences pures, tiennent à ce que ses questions les plus fondamentales ont su frapper l'imagination collective.

    "La pensée mathématique contemporaine" de Frédéric Patras pp 133-134