Ok

En poursuivant votre navigation sur ce site, vous acceptez l'utilisation de cookies. Ces derniers assurent le bon fonctionnement de nos services. En savoir plus.

La Recherche - Page 8

  • Avancée dans la preuve informatique

    1354470170_blue_monster_happy.png6 ans après la démonstration par ordinateur du théorème des quatre couleurs, Georges Gonthier et son équipe réussissent la démonstration, autrement plus complexe, du théorème de Feit et Thompson, un théorème central pour la théorie des groupes et leur classification. Grand pas pour les mathématiques, qui s’appuient de plus en plus sur la preuve par ordinateur, c’est surtout une réussite pour l’informatique qui montre là sa capacité à déployer des outils et des techniques de qualité pour codifier les mathématiques.

     

    Après la validation du théorème des quatre couleurs par le logiciel de certification Coq en 2005, c’est au tour du théorème de Feit et Thompson de passer dans la moulinette de la preuve informatique. La difficulté était cependant incomparable car, si le théorème des quatre couleurs n’utilise que des mathématiques combinatoires élémentaires, le théorème de Feit et Thompson s’appuie sur des mathématiques embrassant, grosso modo, le programme jusqu’à la licence ! Il est également plus long, avec ses 250 pages de démonstration, et les enjeux autrement importants, avec des applications dans de nombreux domaines scientifiques modernes, de la mécanique quantique à la cryptographie, en passant par la cristallographie.

    La suite de l'article ICI et les témoignages des membres de l'équipe ICI .

  • Le mathématicien et les médias

    villaniCédric Villani aborde dans ce court texte, les écueils qu'il a rencontrés au cours de ces deux ans passés au contact des médias.

     

    Alors dites-nous, les mathématiques, au fond, à quoi ça sert? Quand revient la fatidique et sempiternelle question, dans une interview ou sur un plateau de télévision, on pousse un grand soupir intérieur; un moment on a une pensée pour

    tel ministre qui un jour était si agacé par la question d’un animateur qu’il a quittéle plateau sur le champ, mais on se reprend et on passe en mode automatique pour répondre.

    Après tout, cette question, qui nous paraît monstrueuse, est légitime : pour quantité de nos concitoyens, la mathématique s’apparente à une activité parfaite­ment gratuite, et quand on leur explique que c’est indispensable à n’importe quelle avancée technologique un peu sophistiquée, ils sont aussi surpris que si on leur disait que le grec ancien est utile pour construire des voitures.

    La suite ICI

    Source : http://www.scoop.it/t/mathoscoopie

    Crédit photo: Par Renate Schmid (http://owpdb.mfo.de/detail?photo_id=7082) [CC-BY-SA-2.0-de (http://creativecommons.org/licenses/by-sa/2.0/de/deed.en)], via Wikimedia Commons

  • Les mathématiciens irlandais résolvent le problème de la circulation des bulles dans la Guinness

    Glas_Guinness.jpgC'est en 2004 (seulement!) que les scientifiques ont pu prouver en vidéo, que la descente des bulles dans la Guinness n'était pas une illusion d'optique mais bien une réalité.  Les différences de température créent un mouvement de convection. Ainsi, les bulles remontent par un courant central, stagnent près de la surface, puis redescendent sur la périphérie du verre.

    Ce phénomène de Guinness cascade peut se produire de fait dans n'importe quel liquide, mais le contraste produit par une bière noire et des bulles claires le rend plus visible. Selon les scientifiques, la Guinness d'origine irlandaise est la plus propice à l'observation. 

    Aujourd'hui la compréhension du problème avance, et l'effet de la géométrie du verre est étudié. Et c'est principalement cette partie qui a occupé nos matheux car le phénomène de circulation de bulles en contresens est connu en sédimentation depuis 1920 sous le nom d'effet Boycott

    On observe que la sédimentation est plus rapide dans un tube incliné que dans un tube vertical. En effet, lorsque le tube est incliné, les sédiments s'accumulent rapidement contre la paroi inférieure du tube, libérant ainsi un flux de contre-écoulement le long de la paroi opposée.

     

    Il se forme alors deux flux de densité différente. L'un chargé de sédiments et descendant vers le fond du tube, l'autre plus léger remontant vers la partie supérieure.

    L'expérience donne un résultat identique avec la Guiness.



    L'animation suivante montre le champ de vitesses des bulles dans un plan de coupe du verre. Une découverte qui ne pouvait pas être tue plus longtemps!

     


    La source et l'article Arxiv.

  • Les mathématiques innovantes

    Intervention d'Albert Burroni sur le thème de « Mathématique des structures de l'informatique théorique », lors de l'édition 2012 de la conférence-table ronde mathématiques innovantes.

    Cette conférence sur le thème « Réseaux et structures dynamiques » s'est déroulé le Mardi 22 mai 2012 dans les locaux de Supméca Paris.

     

     

  • Mathématiques et tsunami

    Les radars à tsunami évalueront mieux et plus rapidement leur hauteur

    L'estimation de la hauteur d'un tsunami est extrêmement compliquée. Au Japon, l'Agence météorologique nationale doit donner des alertes aux tsunamis en cas de séisme, et se base pour cela sur les informations les plus facilement obtenues : localisation de l'épicentre et magnitude du séisme. Néanmoins, ces seules informations ne permettent pas de calculer assez rapidement l'ampleur d'un tsunami en cas de séisme d'une magnitude supérieure ou égale à 8.0. Ainsi, lors du séisme du 11 mars 2011, la magnitude préliminaire calculée par l'agence était de seulement 7.9. Elle diffusait alors trois minutes après le séisme une alerte à un tsunami d'une hauteur maximale de trois mètres, soit une valeur nettement inférieure à celle effectivement constatée quelques dizaines de minutes plus tard.

    Un programme de recherche associant notamment l'Université du Kansai, le Ministère du Territoire, des Infrastructures, des Transports et du Tourisme (MLIT) et le Ministère des Affaires intérieures et des Communications (MIC), vise à la création d'un système d'alerte de nouvelle génération permettant de déterminer de manière plus précise l'amplitude d'un tsunami dans les cinq minutes suivant un séisme.


    Principe de fonctionnement du système
    Crédits : ML / Ambassade de France au Japon


    Le dispositif d'observation fonctionne tel un radar (par effet Doppler) : il envoie des ondes radio vers la surface de l'océan, puis analyse le retour de ces ondes radio ce qui permet de calculer la vitesse et l'ampleur des vagues. En effet, un modèle mathématique basé sur la théorie des ondes linéaires permettrait de relier directement le spectre de vitesse de l'onde et celui de son amplitude. Ce type de système est d'ailleurs déjà utilisé pour l'observation des marées, et a permis d'observer le tsunami engendré par le séisme du 11 mars 2011 dans la préfecture de Wakayama 30 km avant son arrivée sur les côtes.

    Le projet prévoit l'installation de radars à deux emplacements sur la côte, ce qui rendra possible l'observation des vagues jusqu'à 60 km avant leur arrivée sur le continent. Les données collectées lors de typhons et de tremblements de terre de petite et moyenne ampleur, associées à des informations topologiques sur le fond des océans et les côtes, serviront de base afin de prédire de manière plus précise la taille des vagues arrivant sur le littoral.


    Emplacement de ces radars à tsunami
    Crédits : ML / Ambassade de France au Japon


    Ces recherches devraient durer deux ans et aboutir à un système opérationnel dans quatre à cinq ans, en prévision du redouté tremblement de terre du Tokai, et des failles associées Tonankai et Nankai.


    Source:
    http://www.bulletins-electroniques.com/actualites/69447.htm