Ok

En poursuivant votre navigation sur ce site, vous acceptez l'utilisation de cookies. Ces derniers assurent le bon fonctionnement de nos services. En savoir plus.

- Page 8

  • De retour de vacances : Racine de 2, Grothendieck et Bourbaki

    7a66b0a3fbc6cc4b43796727d4e4ab81.jpgAprès quinze jours passés près de Saint-Tropez, plus exactement à Gassin, petit village adorable, perché à flanc de montagne  qui domine le golfe de Saint-Tropez, me voici de retour à la maison. Durant le trajet qui mène de la Croix-Valmer aux iles de Port-Cros et de Porquerolles, j'ai pu longuement méditer sur les yatchs de luxe et les villas surplombant la mer. Un propriétaire a même construit un funiculaire pour relier son habitation à la grande bleue... et je me suis dit que ni les bateaux, ni les villas, ni les funiculaires n'auraient intérêt à hériter d'un propriétaire comme moi !

    Alors je me suis replongé tranquillement dans mes lectures estivales, allongé sous le soleil et le mistral, badigeonné de crème  indice 40, ce qui m'a permis de passer totalement inaperçu parmi les touristes nouvellement arrivés !

    Au programme, j'ai lu l'excellent livre de Frédéric Patras : "La pensée mathématique contemporaine" qui dresse son état des lieux en sept chapitres :
    Le style en mathématiquesea4dd0cb3ecc4b64d583d9da979b5b06.jpg
    De Platon à Husserl
    Des origines des mathématiques modernes
    Axiomes et intuitions
    Le courant structuraliste
    Structures et catégories
    Les demeures de la pensée
    A la rencontre du réel

    Frédéric Patras analyse avec beaucoup de finesse et de profondeur les apports de Bourbaki, tant en termes positifs que négatifs ainsi que leur incidence sur la difficile succession après cette période clé de la vie des mathématiques françaises. Il nous présente aussi l'oeuvre méconnue de 1000 pages d'Alexandre Grothendieck,
    Récoltes et Semailles, dont les 100 premières pages ont aussi fait l'objet d'une lecture attentive.

    " Penser avec Grothendieck " quelques citations pdf : ICI

    3ce31fcf1643f72d90e57fa00687d5c2.jpgJ'ai presque terminé " Le fabuleux destin de racine de 2 " par Benoit Rittaud qui nous transporte de 1900 avant notre ère grâce à la tablette babylonienne YBC 7289 sur laquelle on trouve la présence de ce nombre avec la précision étonnante de 7 décimales jusquaux calculs par 11c0d93e40cf205968c21d569364f4d2.jpgordinateurs les plus récents, soit en tout plus de 400 pages de voyage dans l'espace et dans le temps autour de ce nombre qui n'a pas à palir devant les succès médiatiques de Pi et du nombre d'or.

    La vidéo de la conférence de Benoit Rittaud et de nombreuses ressources sont  disponibles sur le site:

    Le Fabuleux destin de √2 .

  • Bourbaki, Gödel, les mathématiques et la philosophie

    En marge de la théorie des structures, les idées bourbakistes sur les fondations ont été critiquées violemment par un logicien, A. Mathias. Son attaque rejoint partiellement les réserves que l'on peut émettre à propos de l'idée de structure : Bourbaki n'aurait jamais vraiment pris au sérieux la logique ou l'épistémologie. Mathias dénonce les approximations concernant le système de Zermelo-Fraenkel ou la trop longue incompréhension des résultats de Gödel. Sous sa forme la plus extrême, l'attitude de Bourbaki sur ces questions est caractérisée par une description restée célèbre de Dieudonné :

    « En ce qui concerne l'attitude de Bourbaki vis-à-vis du problème des "fondations" : elle est décrite au mieux comme une indifférence totale. Ce que Bourbaki considère comme important est la communication entre mathématiciens ; les conceptions philosophiques personnelles n'entrent pas en compte pour lui ».

    Il faut aujourd'hui en finir avec de telles positions de principe. Si l'échec du programme structuraliste se traduit par la nécessité de rendre au concept de structure sa fonction téléologique sans essayer de le figer en une notion mathématique formalisée univoque, les tra­vaux de Gödel montrent, pour ce qui est des fondements, les limites de la stratégie consistant à se satisfaire d'un système de type Zermelo-Fraenkel, et à se désintéresser de la métamathématique. Nous incluons dans celle-ci les vues synthétiques et prospectives, comme la recherche des concepts originaires d'une discipline, recherche qui n'est pas du ressort direct de la mathématique formalisée. En d'autres termes, pour aller aujourd'hui au-delà de Bourbaki, il faut en finir avec un discours pragmatique et restaurer, aux côtés de la recherche, le débat philosophique. La mathématique a tout à y gagner : c'est pour elle le seul moyen de reconquérir une audience. Les succès médiatiques de la physique, sa concurrente immédiate dans le panthéon des sciences pures, tiennent à ce que ses questions les plus fondamentales ont su frapper l'imagination collective.

    "La pensée mathématique contemporaine" de Frédéric Patras pp 133-134

  • Conférences sur l'enseignement des mathématiques

    L'APMEP publie les fichiers PDF des conférences des journées 2006 de l'Association : ICI

    Conférence d’Alain Bouvier 
    Les mathématiques, leur enseignement et la formation des maîtres

    Notre système éducatif connaît beaucoup de réformettes indiscernables en dehors des frontières de l’Hexagone, bien qu’elles marquent curieusement beaucoup les enseignants, et seulement un petit nombre de réformes.

    Le système bouge, mais, somme toute, lentement, par décennies. On remarquera que la majorité des réformes sont d’origine exogène, conséquences d’évolutions sociétales, comme si le système peinait à trouver des voies endogènes de réforme. Il s’agit là d’une tendance lourde qui s’accentue clairement.


    Dans le rapport déjà évoqué sur les acquis des élèves (2005), les Inspections générales françaises montraient que le fonctionnement de notre système pédagogique repose sur des notations, des moyennes et des compensations incessantes. Non seulement ces moyennes n’ont pas de sens, mais on se livre à des moyennes de moyennes qui en ont encore moins ! Les Inspections générales dénoncent cette « dictature de la moyenne » (on n’est pas loin de la « constante macabre » d’André Antibi) et de la compensation généralisée. Que sait faire un élève qui à 10 ? Quelle signification, par exemple, accorder au Brevet en termes de compétences ? En mathématiques, que sait faire un élève qui a réussi le Bac S ?


    Conférence d’Yves Chevallard
    Les mathématiques à l’école : pour une révolution épistémologique et didactique.
    Mathématiques et utilité.
    Les exemples de la proportionnalité et de la proportionnalité inverse, des cas d'aglité des triangles, des fractions, de l'inverse d'une fraction.

    Il est deux manières au moins, pour les générations montantes, de recevoir les connaissances que l’école est chargée de leur transmettre : soit comme donnant une clé du monde précieuse entre toutes, soit comme un prix à payer pour entrer dans la société, avant peut-être de faire litière des savoirs que l’école aura prétendu leur apporter.

    Pourquoi par exemple lanotion d’angle ? Pourquoi les triangles ? Pourquoi le concours des médianes (ou des hauteurs, etc.) ? Pourquoi les angles saillants et les angles rentrants ? Pourquoi les polynômes ? Pourquoi les fonctions continues ? Pourquoi les droites ? Pourquoi le parallélisme de droites ? À cela, nulle réponse explicite, claire, fondatrice d’un pacte d’étude républicain.

    "The good teacher is known by the number of subjects that he declines to teach"

    Conférence de Jean Dhombres
    L’avenir de l’enseignement des mathématiques n’est pas un long fleuve tranquille...
    Exemples de Comte, de  Descartes, de la représentation, de Curie.

    Le défi majeur pour le futur, est bien pour l’enseignant des mathématiques, de devoir s’intéresser de près à autre chose que les mathématiques, et ce pour la qualité même de son enseignement.

    Conférence de Claire Margolinas et Françoise Wozniak
    Les mathématiques à l’école ? Plus complexe qu’il n’y paraît ! Le cas de l’énumération de la maternelle ... au lycée.


    « L’énumération intervient rarement isolée d’une autre activité, mais par contre, elle n’est pas réservée au domaine des mathématiques. Il y a en fait de très nombreuses activités durant lesquelles il faut parcourir une collection de façon ordonnée et contrôlée.

    Voici deux exemples très typiques en prélecture, que nous avons recueillis en grande section de maternelle, au mois de mai. Dans le premier il faut retrouver des lettres suivant un modèle. Il faut donc parcourir toute la collection des lettres pour retrouver les lettres u et n du modèle. Dans le second, il faut parcourir toute la collection des mots pour retrouver le mot du modèle maman. Cette deuxième fiche cache en fait une autre activité d’énumération, car les enfants ne savent pas lire. Quand ils considère un mot, ils doivent comparer les lettres de ce mot avec les lettres du modèle, une par une, dans l’ordre. Dans nos observations en maternelle, nous avons remarqué que, pour les élèves les plus faibles, pour lesquels la reconnaissance de la lettre ou du mot est déjà difficile, le parcours de la collection des lettres ou des mots ne va pas de soi non plus. Ils sont confrontés à une double difficulté : celle de la lecture, qui est repérée par le professeur, et celle de l’énumération, qui n’est souvent pas considérée.
    Maintenant que vous avez cette clé d’observation, vous allez voir de l’énumération partout…
    effectivement, énumérer est une activité très courante, combinée avec toute sorte d’autres activités, qu’elles soient ou non mathématiques. »