Ok

En poursuivant votre navigation sur ce site, vous acceptez l'utilisation de cookies. Ces derniers assurent le bon fonctionnement de nos services. En savoir plus.

Paradoxes, limitations,erreurs - Page 3

  • Le refus de l'infini

    Volpin.jpgCertains mathématiciens refusent l'idée que l'infini puisse être un concept que l'on peut utiliser. Ce sont les finitistes. Les plus radicaux d'entre eux sont les ultrafinitistes dont faisait partie le mathématicien russe Alexander Yessenin-Volpin, logicien et poète ( qui a été interné dans un hopital psychiatrique en 1949 pour "poésie anti-soviétique" !).

    Lorsqu'on lui demandait si toutes les puissances de 2 avaient un sens, il précisait que la question devait être détaillée pour qu'il puisse y répondre et que chacun de ces nombres devait être étudié.

    Il répondait presque instantanément que 21 était un réel. Lorsqu'on lui demandait si 22 était un réel, il mettait un peu plus de temps à répondre, puis encore plus de temps pour préciser que 23 en était aussi un. Et si on lui demandait un jour si  2100 était un réel, il mettrait  2100  plus de temps à répondre que pour 21. Belle façon de montrer qu'il était impossible de répondre à la question et que l'infini est un concept qui n'a pas de sens.

    Source: L'excellent livre "Au nom de l'infini" de Cantor et Graham

     

  • Dis "Pourquoi?"

    L'objectif de ce billet est de se demander s'il peut exister une théorie générale des questions "Pourquoi?", ou de l'explication en général, de montrer que des philosophes et des scientifiques s'intéressent à cette question, et d'essayer de comprendre en quels termes est-ce qu'elle peut se formuler, quelles sont les difficultés liées à son élaboration. On ne pourra bien sûr pas traiter la totalité de ce sujet dans un simple billet de blog, compte tenu de l'ampleur de la tâche, de sa difficulté, du fait que l'on ne dispose certainement pas actuellement des bases théoriques suffisantes et aussi, signalons-le, des limites vite atteintes de l'auteur!


    Les questions "Pourquoi?"


    pourquoiLorsque l'on demande à Teddy et Valentin, "Pourquoi les léopards ont-ils des tâches?", voilà ce qu'ils répondent: 

    L’histoire se passe dans la jungle, en Afrique. Nous sommes le 31 mars, avec trois meilleurs amis. Il y a Benji, un jeune léopard sans tâches, Chita et Kikou, ses deux amis singes. Comme chaque jour, ils jouent à trap-trap et à courir dans la jungle. Chita et Kikou adorent se cacher ou se percher dans les arbres. Mais Benji a beaucoup plus de mal pour les attraper. Eux, ils sont habitués à grimper et à sauter d’arbre en arbre. Pour Benji, il faut courir plus et user beaucoup d’énergie pour grimper dans l’arbre où se trouvent ses amis.

    Chita et Kikou, très farceurs, décident de faire une farce à leur ami pendant sa sieste. Ils lui mettent des tâches de peinture noire sur son pelage. Benji se réveille et ne remarque rien. Il part à la recherche de ses amis. Mais il se pose des questions : « Pourquoi tout le monde me regarde et rie quand je passe ? » Arrivé au bout de la jungle, il retrouve Chita et Kikou. Ils tiennent un bout de miroir et se tordent de rire. Benji sursaute de peur quand il se voit avec son pelage tout tacheté de noir. Il comprend pourquoi les habitants rigolaient. Voyant leur ami triste, Chita et Kikou disent : « Poisson d’avril ! » Chose qu’ils ne savent pas, c’est que c’est de la peinture indélébile. Du coup, Benji rit aussi, il aime son nouveau look. Surtout depuis que les jeunes léopards l’admirent ! Voila pourquoi les léopards ont des tâches. On trouvera d'autres réponses d'enfants à la question "Pourquoi?" ICI.

    Lorsqu'on pose la même question au scientifique voilà l'un des éléments principaux de la réponse qu'il propose, et l'on est bien loin de celle de Teddy et de Valentin:

     


    léopard.png

     

    Une réponse intermédiaire entre le conte et la modélisation mathématique, serait le récit du vulgarisateur:

    Ce qui est étonnant et remarquable, c'est que l'équation mathématique montre que les différents motifs de pelage dépendent seulement de la grosseur et de la forme de la région où ils se développent. Autrement dit, la même équation de base explique tous les motifs. Mais alors, pourquoi les tigres et les léopards ont-ils des motifs différents puisque leurs corps sont très similaires ? Parce que la formation des motifs ne se produirait pas au même moment durant la croissance de l'embryon.
    Dans le premier cas, l'embryon serait encore petit et, dans l'autre cas, il serait déjà beaucoup plus gros. Plus précisément, l'équation montre qu'il ne se forme pas de motif si l'embryon est très petit, qu'il se forme un motif rayé si l'embryon est un peu plus gros, un motif tacheté s'il est encore plus gros, et ... aucun motif s'il est trop gros !
    Voilà pourquoi la souris et l'éléphant n'auraient pas de taches !

    A travers cette question, il semble flagrant que la question du "Pourquoi?" est relative, que la connaissance de l'interlocuteur est fondamentale. Une théorie du "Pourquoi?" pourra-t-elle se constituer indépendamment de celui-ci?

    Un autre type de question va faire apparaître une nouvelle difficulté. Par exemple on peut se demander: "Pourquoi Adam a-t-il mangé la pomme?"

    La première idée qui viendrait à l'esprit est de considérer que cette question est du domaine religieux et qu'elle ne trouvera aucune réponse. Si cette remarque est vraie et renvoit la problématique vers la construction des mythes fondateurs, il n'en reste pas moins que si l'on tente d'y répondre, force est de constater que son ambiguité n'est pas religieuse mais, bel et bien, sémantique.

    On peut en fait répondre à "Pourquoi Adam a-t-il mangé la pomme?". La problématique implicite étant de répondre à la question "Pourquoi lui?".

    On peut aussi répondre à "Pourquoi Adam a-t-il mangé la pomme?", la problématique implicite étant maintenant de savoir pourquoi cette action a été réalisée et non une autre, comme l'écraser, la donner, la cacher.

    Il reste une dernière interrogation du type "Pourquoi Adam a-t-il mangé la pomme?", sous entendu, pourquoi ce fruit, pourquoi un fruit?

    Contrairement à l'exemple précédent où la connaissance de l'interlocuteur avait une place capitale une fois que la question était posée, dans ce cas présent, c'est la question elle-même qui peut être ambigüe, trop lâche. Il paraît donc important de se prémunir devant ces ambiguités en formulant une question "Pourquoi?" satisfaisante permettant d'assurer une réponse pertinente. Il est important de connaître l'angle d'attaque de la réponse satisfaisante. Mais est-il possible de construire ce type de questions? Là aussi c'est un point incontournable de la possibilité de formuler une théorie du "Pourquoi?".

    Dans le domaine mathématique, des questions "Pourquoi?" peuvent aussi apparaître, comme par exemple :

    CodeCogsEqn(23).gif

    Le problème qui se pose ici est encore d'un autre niveau que les deux précédents. Il s'agit de comprendre que ce n'est pas parce qu'une chose est vraie et qu'elle est prouvée, qu'elle est expliquée. Le résultat énoncé plus haut est vrai mais la question est de savoir "Pourquoi est-ce que c'est Pi/4 qui se trouve à droite de l'égalité et pas un autre nombre?", sous entendu quel est le lien explicatif entre le membre de gauche et celui de droite? On va donc voir arriver un gros problème avec le statut de la démonstration mathématique et du calcul. Démonstrations et calculs ne sont pas tous explicatifs. La démonstration, le calcul ne répondent pas de façon inconditionnelle à la question du "Pourquoi?". Dans le champ des mathématiques, une théorie du "Pourquoi?" ne pourra pas se contenter de l'existence d'une démonstration valide ou d'un bon calcul.

    Si l'on reste dans le domaine des mathématiques, un autre type de question "Pourquoi?" pose problème. C'est celle qui demande pourquoi est-ce que l'on fait tel type de chose pour faire une démonstration? Par exemple "Pourquoi introduire la fonction "machin" pour démontrer le résultat "truc"? Et le professeur de mathématiques ne s'y trompe pas car sa réponse est presque toujours invariable même si elle n'est en rien explicative "On fait ça parce que ça marche!". On voit donc bien qu'il y a là une difficulté réelle qui aborde la naissance des idées, la justification de l'intuition, la justification d'une étape "deus ex machina".

    D'autres questions "Pourquoi?" peuvent aussi s'avérer problématiques, comme par exemple: "Pourquoi JFK est-il mort le 22 novembre 1963?". Une fois levées les ambiguités de la question sur les attentes (JFK, mort ou date), il est ici question de l'explication historique. L'histoire ne se répétant pas, peut-on concevoir une "explication historique". L'explication relevant principalement de la rationnalité et de la science, n'est-on pas dans l'incapacité d'expliquer l'histoire, sauf à la considérer comme science, ce qui n'est pas sans apporter un autre lot de difficultés?

    Les questions exclusivement scientifiques ne sont pas non plus sans poser de problème!

    Y a t'il une meilleure explication que les autres à cette question : "Pourquoi aucun observateur ne peut se déplacer plus vite que la lumière ?" ?

    "Pourquoi les lois de Kepler sont-elles valides ?" Le "vrai" physique, comme nous l'avons vu juste au dessus, n'épuise pas à lui seul la question du "pourquoi".

    Derrière ces quelques "questions-pourquoi", nous voyons pointer la difficulté de concevoir une théorie qui permettrait d'englober toutes les réponses possibles et de sélectionner parmi elles, celle qui est la plus pertinente. Cette théorie devra de plus nécessairement contenir les "questions-pourquoi" des mathématiques. La réponse au "Pourquoi?" se devant d'être explicative, il faudra se confronter à la nature de l'explication qui soulignons-le, ne peut pas éliminer le récepteur, introduisant ainsi une forte part de relativité, bien inconfortable en sciences par exemple.

    Pouvons-nous concevoir une théorie du "Pourquoi?"?  Est-il possible de la mathématiser, et est-elle  compatible avec les mathématiques?  Pour préciser les choses , la théorie des questions-pourquoi impose que le particulier puisse se déduire de la règle. Cela exige aussi de savoir s'il est possible de lever toutes les ambiguïtés associées à ce type de question, comme nous pouvons le constater dans les questions sur Adam et la pomme. Il faut aussi se poser la question, si l'on choisit d'associer la meilleure explication à la meilleure probabilité de certitude, de savoir si la démonstration mathématique (de probabilité 1) est toujours explicative. Il faut aussi se poser la question de savoir si l'on parvient à expliquer le "Pourquoi faire cela?" en vue d'une démonstration, plutôt qu'autre chose, mettant ici de l'arbitraire là où il ne devrait pas y en avoir.

    Lire la suite

  • L'erreur de Martin Gardner ou l'importance de définir le protocole en probabilités

    Martin Gardner est décédé en mai dernier et laisse derrière lui un nombre considérable de publications, principalement dans le domaine des jeux mathématiques. Il publia pour la première fois le problème des deux enfants dans les colonnes du Scientific American en 1959. Il le republia plus tard dans  The Second Scientific American Book of Mathematical Puzzles and Diversions. La première réponse que donna Martin Gardner était eronnée ou plutôt incomplète. Il rectifia sa réponse dans une autre  édition mais c'est la solution erronée qui est restée plus populaire que la correction. De plus, en 2010, une variante du problème des deux enfants, celle de l'enfant-mardi est apparue et est devenue un sujet "viral" dont la solution proposée présente le même défaut.

    On peut certainement faire l'analogie de ce problème avec le paradoxe de Bertrand que j'avais abordé dans un billet précédent.

     Martin_Gardner.jpeg

    Le problème des deux enfants

    Il s'énonce comme suit:

    Mr. Smith has two children. At least one of them is a boy. What
    is the probability that both children are boys?


    Mr. Jones has two children. The older child is a girl. What is
    the probability that both children are girls?

    Lire la suite

  • O est-il un Entier Naturel ?

     

    La voie la plus simple pour répondre à la question est de dire que par définition 0 est ou n'est pas un entier naturel. En mathématiques, il est possible de poser la définition  que l'on souhaite. Celle-ci se trouve marquée dans le marbre et interdit toute négociation possible. Considérons par exemple la construction de l'ensemble des entiers naturels de façon axiomatique. Le premier axiome dit que 0 appartient à cet ensemble.  0 sera ensuite défini comme le plus petit élément de cet ensemble par un axiome suivant.

    L'ambiguité sur la présence du zéro dans l'ensemble des entiers naturels est abordée très clairement dans l'article de Wikipédia sur le sujet:

    Au début :

    En mathématiques, un entier naturel est un nombre positif (ou nul) permettant fondamentalement de dénombrer des objets comptant chacun pour un. Un tel nombre entier peut s'écrire avec une suite finie de chiffres en notation décimale positionnelle, sans signe et sans partie fractionnaire, c'est-à-dire sans chiffre « après la virgule ».

    Les entiers naturels sont donc, outre zéro, ceux que l'on commence à énumérer avec la comptine numérique : un, deux, trois, quatre…

    Au milieu :

    Pour lever l'ambiguïté au sujet de la prise en compte de zéro comme entier naturel, l'ensemble est parfois noté « N0 ». L'indice 1 dénote alors au contraire l'exclusion de zéro. Mais l'usage consacre plus souvent pour cette restriction l'ajout d'un astérisque en exposant.

    N = mathrm{I_{,}!!N} = mathbb{N} = mathbb{N}_0 = { 0, 1, 2, ldots }

    mathbb{N}^* = mathbb{N}_1 = { 1, 2, ldots }

    Différentes notations pour l'ensemble des entiers, comprenant ou non zéro.
    ............
    ...........
    C'est encore plus flagrant dans l'article anglophone, qui juste après la présentation, aborde la question de l'histoire des nombres naturels et le statut du zéro.
    Afin de mieux cerner où se situe l'ambiguité, il est nécesssaire de revisiter les notions de nombres cardinaux et de nombres ordinaux.

    Lire la suite

  • Mesurer la diversité: oui mais comment ?

     

     

    Depuis une vingtaine d'années, un important problème rencontré dans la conservation des espèces est la mesure de la diversité. Cette notion intervient pour savoir quelles espèces en priorité doivent être protégées. La possibilité d'une mesure de la diversité peut d'ailleurs s'étendre à de nombreux autres domaines.

    Le sujet contient en fait deux difficultés, la première est d'évaluer la diversité de deux éléments et de la convertir en une quantité que l'on pourrait assimiler à une distance, la seconde est d'évaluer la diversité d'un groupe en utilisant les "distances" deux à deux précédentes et de pouvoir la comparer à celle d'un autre groupe. C'est ce deuxième point que nous allons aborder ici et tenter d'établir s'il peut exister une définition axiomatique de la diversité, au sens de la comparaison de deux ensembles comportant le même nombre d'individus.

    Lire la suite