Ok

En poursuivant votre navigation sur ce site, vous acceptez l'utilisation de cookies. Ces derniers assurent le bon fonctionnement de nos services. En savoir plus.

Mathématiques - Page 29

  • Vocation et passion des mathématiques


    Vocation et passion des mathématiques - JM Coron... par Sciences_Maths_Paris

  • Casyopée s'étoffe

    J'avais déjà parlé sur ce blog de l'excellent logiciel Casyopée développé par JB Lagrange et son équipe de l'IREM de Rennes. ce logiciel est un environnement d'apprentissage des fonctions et de la modélisation qui peut être utilisé à tous les niveaux du lycée, aussi bien pour un travail d'approche, de remédiation ou d'approfondissement comme son nom l'indique parfaitement d'ailleurs:

    Casyopée =  Calcul symbolique offrant des possibilités à l'élève et l'enseignant 

    Il est dorénavant possible de s'incrire à la newsletter permettant de se tenir informé des évolutions et du travail de l'équipe. Le site propose aussi des mini-sites présentant des activités possibles ainsi que des documents d'accompagnement. Des vidéos de présentation du logiciel agrémentent l'ensemble.

     

    ImageCasyop.gif

     

     

  • Nombres "321" ou nombres de Thābit

    20010219-001-01.jpgUn nombre 321 dit de Thābit pour Thābit ibn Qurra, est un nombre de la forme Kn=3·2n−1 , où n est un entier naturel. 

    Pour les premières valeurs de n =0, 1, 2... ces nombres valent 2, 3, 5, 11, 23, 47, 95, 191, 383, 767, 1535, 3071, 6143, 12287, 24575, 49151, 98303, 196607, 393215, 786431, 1572863, 3145727... (Suite A055010).

    Les premiers nombres de Thābit premiers appelés aussi 321-premiers sont : 2, 5, 11, 23, 47, 191, 383, 6143, 786431, 51539607551, 824633720831,... (Suite A007505).

    La premières valeurs de n pour lesquelles on trouve des 321-premiers sont: 1, 2, 3, 4, 6, 7, 11, 18, 34, 38, 43, 55, 64, 76, 94, 103, 143, 206, 216, 306, 324, 391, 458, 470, 827, 1274, 3276, 4204, 5134, 7559, 12676, 14898, 18123, 18819, 25690, 26459, 41628, 51387, 71783, 80330, 85687, 88171, 97063, 123630, 155930, 164987, 234760, 414840, 584995, 702038, 727699, 992700, 1201046, 1232255, 2312734, 3136255, 4235414 (Suite 002235).

    Les nombres premiers pour n≥234760 furent trouvés à partir de 2003 à l'aide du 321 project. Le plus grand d'entre eux a été découvert par Dylan Bennet en 2008 avec la valeur de n=4235414. Ce nombre possède 1274988 chiffres en base 10.

    La représentation binaire de ces nombres est particulière. Elle est formée de 10 puis de n 1.

    Par exemple pour K7=3·27−1=383, l'écriture binaire est 101111111.

    Thābit ibn Qurra était un mathématicien, physicien, astronome et musicologue persan qui vécu de 826 à 901.

    Il montra que si Kn, Kn−1, and 3×K2n−1 + 2 sont tous premiers, alors les nombres 2n×Kn×Kn−1, 2n×(3×K2n−1 +2) sont amicaux. Cette hypothèse se rencontre seulement trois fois, pour n = 2, 4, et 7, donnant les paires de nombres amicaux suivantes: (220, 284), (17296, 18416), et (9363584, 9437056). (Source: MathWorld et Wikipédia).

     

  • Je continue avec l'apprentissage dynamique

    Je ne sais pas si je m'approche d'un but ou si je m'égare mais je continue...

    Je viens de réaliser une carte de l'apprentissage dynamique ainsi qu'un court texte explicatif pour en faciliter l'interprétation. Il est à lire avec le travail que j'ai déjà réalisé sur les logos et la présentation des processus d'apprentissage simultanément à la présentation des contenus.

    apprentissage_dynamique.jpg