Ok

En poursuivant votre navigation sur ce site, vous acceptez l'utilisation de cookies. Ces derniers assurent le bon fonctionnement de nos services. En savoir plus.

Culture Générale - Page 60

  • La revue Accromath

    333322b9970b446a60fb44744262bdab.jpgAccromαth est une revue semi-annuelle produite par l'Institut des sciences mathématiques et le Centre de recherches mathématiques. S'adressant surtout aux étudiants et enseignants d'école secondaire et de cégep, la revue est distribuée gratuitement dans toutes les écoles secondaires et tous les cégeps du Québec.


    Au programme du numéro 2 :

    Dossier Applications des mathématiques
    Les miroirs ardents
    Dossier Histoire des mathématiques
    Eurêka ! Eurêka !
    Dossier Mathématiques et musique
    La construction des gammes musicales
    Dossier L'infini
    L'infini, c'est gros comment ?
    Dossier Logique mathématique et informatique théorique
    Envolées intersidérales... à destination terrestre !
    Apprendre à parler à des machines
    Section problèmes

    Et du numéro 1 :

    Dossier GPS
    Ou suis-je?
    Le signal du GPS
    L'hyperbole
    Dossier Racines
    5√70 sans calculatrice
    Extraction d'une racine dans un carré
    Les fractales
    Codes numériques | Codes-barres
    Dossier Dimension 4
    Vivre en dimension 4
    Voyager en dimension 4
    Dossier Mathématiques et poésie
    À la recherche de l'idéal
    L'espace et le temps dans la poésie symboliste
    La sensibilité mathématique de Victor Hugo
    Section problèmes
  • Une nouvelle forme " mathématique", le Gömböc

    Gábor Domokos et Péter Varkonyi, deux chercheurs hongrois, ont découvert comment certaines créatures à carapaces, comme les tortues et les scarabées, étaient capables de développer une forme avec un point d'équilibre stable et un point d'équilibre instable.

    ce00ed6099c32c5b97e41dbfec67dd6c.jpg

    Gábor Domokos, chef du département de mécanique, matériaux et structures de l'Université Technique de Budapest (BME) et un ancien étudiant, Péter Varkonyi qui travaille maintenant à l'Université Princeton aux Etats-Unis, ont relevé le défi et créé une forme homogène appelée Gömböc qui possède seulement ces 2 points d'équilibre (corps mono-monostatique).

    C'est ICI pour le site et la vidéo

    Une interview du professeur Domokos : ICI

    La source de l'info est ICI

    Une note du blog Archiact, cabinet de curiosités architecturales : ICI

    Comment la géométrie aide les tortues à retomber sur leurs pattes ? un article du Nouvel Observateur: ICI

  • Comment Tartaglia présenta sa solution historique ?

    Au XVIème siècle, en Italie, les mathématiciens s'affairaient à résoudre les équations du 3ème degré, saine occupation qui déchaina néanmoins les passions. Tartaglia et Cardan furent les plus célèbres acteurs d'une transmission de méthode de résolution bien difficile mais faite de façon poétique. C'est dans les vers suivants que les mathématiques firent un pas de géant :

    Quando che'l cubo con le cose appresso
    Se agguaglia a qualche numéro discrète :
    Trovati dui altri différent! in esso.
    Dapoi terrai, questo per consueto,
    Che'l loro produtto, sempre sia eguale
    Al terzo cubo délie cose netto ;
    El residuo poi suo générale,
    Delli lor lati cubi, ben sottratti
    Varrà la tua cosa principale.
    In el secondo, de cotesti atti ;
    Quando che'l cubo restasse lui solo,
    Tu osserverai quest' altri contratti,
    Del numer farai due, tal part'a volo,
    Che l'una, m l'altra, si produca schietto,
    El terzo cubo délie cose in stolo ;
    Délie quai poi, per commun precetto,
    Torrai h lati cubi, insieme gionti,
    Et cotai somma, sarà il tuo concetto ;
    El terzo, poi de questi nostri conti,
    Se solve col secondo, se ben guardi
    Che per natura son quasi congionti.
    Questi trovai, et non con passi tardi
    Nel mille cmquecent'e quattro e trenta ;
    Con fondamenti ben saldi e gaghardi
    Nella Città del mar intorno centa.

    Impressionnant n'est-ce pas ?

    Pour un début de traduction : ICI

    Et pour la fin du poème ça ressemble à :

    Je trouvai tout ceci, et sans m'attarder
    En l'an mil cinq cent trente-quatre;
    Sur des fondements solides et inébranlables
    Dans la Cité tout entière ceinte par la mer.

    Les mésaventures d'un mathématicien à la Renaissance rédigées de façon humoristique par Jean-Marc Dewasme ( PDF ) : ICI

    Littérature : Histoire des sciences en Italie depuis la renaissance des lettres jusqu'à la fin du XVIIème par Guillaume Libri : ICI



     

  • Histoire des sciences exactes

    De Jean Dhombres, en vidéo : ICI et ICI

     

  • Les avatars de la rigueur mathématique

    Les mathématiques sont réputées pour leur rigueur : un raisonnement mathématique est souvent synonyme de raisonnement parfait, sans faille et indiscutable. Ne dit-on pas « C’est mathématique ! » pour qualifier une conclusion ou une affirmation qui est incontestable ? Pourtant, la rigueur mathématique n’est pas aussi constante ou déterminée qu’on pourrait le croire. La rigueur absolue est un idéal qui se révèle inatteignable et, en pratique, les critères de rigueur ont varié au fil des décennies et des siècles. Ce qui paraît rigoureux à une époque ne l’est pas nécessairement à une autre.

    Le texte complet d'Evelyne Barbin publié in "Pour la Science juin 2007": ICI.

    Je ne connais pas la durée de disponibilité de cet article en ligne. Il ne contient pas les figures de la revue.