Ok

En poursuivant votre navigation sur ce site, vous acceptez l'utilisation de cookies. Ces derniers assurent le bon fonctionnement de nos services. En savoir plus.

mathématiques - Page 65

  • Les mathématiques sont-elles abstraites ou concrètes?

    Nous avons tellement l'habitude d'associer le concret à une certaine immédiateté, à la facilité d'accès, au sensible, au particulier et à le placer au dessous de l'abstraction qui serait plus universelle, globale, plus subtile, et difficile d'accès. L'abstrait appartiendrait implicitement au monde des idées, et nous qualifions, comme par tradition, sans nous poser beaucoup de questions, les mathématiques d'abstraites, voire même de discipline la plus abstraite que l'on puisse trouver. Pourtant à y regarder d'un peu plus près, je ne suis pas sûr ques les choses soient aussi tranchées qu'il y parait. Afin de déterminer si les mathématiques sont concrètes ou abstraites, quelques citations peuvent nous aider à y voir plus clair. Laissons-nous transporter dans le voyage du concret, de l'abstrait et des mathématiques

    Les triangles sont concrets...

    Nous existons dans l'univers, nous sommes dans l'espace et dans le temps; cet homme, cet arbre, ce triangle sont concrets, présents, mais comme homme, arbre, triangle, sont des formes, qui sont reproduites par nos images mentales, nous pouvons les décomposer, voir comment elles sont faites, et par là même nous « voyons » que le triangle aura toujours telles propriétés, ...
    RUYER, Esquisse d'une philos. de la structure.

    Mais les universitaires ont le défaut d'être abstraits...

    Pour moi, dit Augustin, j'ai dû y venir d'un point de vue abstrait, presque méthodologique. C'est un défaut d'universitaire. Ils ne voient des choses que leur idée platonicienne.
    J. MALÈGUE, Augustin ou le Maître est là.

    L'abstrait c'est l'étendue

    Plus une idée a de simplicité, plus elle a de généralité; plus une idée est abstraite, plus elle a d'étendue. Nous débutons par le concret, et nous allons à l'abstrait nous débutons par le déterminé et le particulier pour aller au simple et au général.
    V. COUSIN, Hist. de la philosophie du 18e siècle

    le "un peu trop nombreux" !

    Souvent je me retrouve triste, j'énumère des choses et mes dix doigts ne suffisent pas. Trop abstraites pour mes dix doigts.
    Paavo Haaviko Le Palais d'hiver

    le définitif

    Les faits concrets ne satisfont pas notre esprit, qui aime l'aspect définitif des abstractions
    CARREL, L'Homme, cet inconnu

    L'intemporel

    Il y a des sciences, comme les sciences abstraites, dont l'objet n'a rien de commun avec l'ordre chronologique des événements, et qui n'ont, par conséquent, aucun emprunt à faire à l'histoire, aucune donnée historique à accepter. Les théorèmes de géométrie, les règles du syllogisme, sont de tous les temps et de tous les lieux...

    A. COURNOT, Essai sur les fondements de nos connaissances.

    un stade de la pensée

    Les variations quelconques des opinions humaines ne sauraient jamais devenir purement arbitraires, quoique je ne puisse démêler aucunement leur marche générale. (...) (Celle-ci) consiste (...) dans le passage nécessaire de toute conception théorique par trois états successifs : le premier théologique, ou fictif; le second métaphysique, ou abstrait; le troisième, positif, ou réel. Le premier est toujours provisoire, le second purement transitoire, et le troisième seul définitif. Ce dernier diffère surtout des deux autres par sa substitution caractéristique du relatif à l'absolu, quand l'étude des lois remplace enfin la recherche des causes.
    A. COMTE, Catéchisme positiviste

    le grand mystère

    La géométrie, étude éthérée, se préoccupait de formes pures, de rapports, de structures abstraites, et non pas de vile matière. Elle poursuivait des idées désincarnées qui se prêtaient à la fois aux révélations les plus profondes et aux jeux les plus délicieux. L'énigme de l'univers se cachait dans la danse des nombres, dans les mouvements des corps célestes et dans les mélodies de la lyre d'Orphée. Adeptes des mystères orphiques en effet, les pythagoriciens avaient donné à ce culte un sens nouveau: le mystère ultime, pour eux, c'étaient les formes géométriques et les relations mathématiques, et la prière la plus belle, c'était l'ascèse de l'étude, la véritable purge orphique. Les dieux parlaient en chiffres.
    Arthur Koestler Les call-girls

    mais le langage, c'est la pensée qui devient abstraite

    Bergson observe (...) que langage et pensée sont de nature contraire : celle-ci fugitive, personnelle, unique; celui-là fixe, commun, abstrait. D'où vient que la pensée, obligée en tout cas de passer par le langage qui l'exprime, s'y altère et devienne à son tour, sous la contrainte, impersonnelle, inerte et toute décolorée.
    J. PAULHAN, Les Fleurs de Tarbes.

    Les mathématiques sont abstraites... à condition que les nombres le soient.

    La théorie de Locke ne peut (...) donner ni Dieu, ni le corps, ni le moi, ni leurs attributs : à cela près, j'accorde, si l'on veut, qu'elle peut donner tout le reste. Elle donne les mathématiques, direz-vous. Oui, je l'ai dit moi-même, et je le répète; elle donne les mathématiques, la géométrie et l'arithmétique en tant que sciences des rapports des grandeurs et des nombres; elle les donne, mais à une condition, c'est que vous considériez ces nombres et ces grandeurs comme des grandeurs et des nombres abstraits, n'impliquant pas l'existence. V. COUSIN, Hist. de la philosophie du 18e siècle


    L'abstrait peut se transformer en concret...

    Le concret c'est de l'abstrait rendu familier par l'usage.
    Paul Langevin, La pensée et l'action

    Concret qui peut lui-même s'imprégner de mathématiques

    Dans le monde infinitésimal, rien ne s'énumère, tout s'agglomère. [...] Nous pénétrons dans une zone où le concret s'imprègne de mathématique et où l'indépendance formelle trouve une limitation.
    Gaston Bachelard Études

    Des mathématiques qui sont aussi abstraites que la musique

    [...] la musique est aussi abstraite que les mathématiques : elle ne peut pas distinguer des catégories morales.
    Guillermo Martinez  Mathématique du crime, trad. Eduardo Jiménez

    Et si elles le sont vraiment, il faudra être très «  concret » pour les enseigner...

    Plus abstraite est la vérité que tu dois enseigner, plus tu dois en sa faveur séduire les sens.
    Fredrick Nietzsche. Par delà le Bien et le Mal

  • Modélisations mathématiques : réchauffement climatique et coopération

    db1677d6138e1462f42edfe6f1f19037.jpgEn ce qui concerne le réchauffement climatique, un modèle mathématique prévoit aussi la progression de la leishmaniose, présente en région méditerranéenne, vers la Suisse ou l'Autriche.

    L'article complet : ICI


    Les modèles informatiques pourraient ne jamais être capables de prévoir avec exactitude le climat

    L'article complet : ICI

     

    En ce qui concerne la modélisation de la coopération, les chercheurs viennois Hannelore Brandt et Karl Sigmund, en partenariat avec l'université de Harvard, sont parvenus a développer un modèle qualitatif simple qui pourrait apporter une réponse au problème de la diffusion large parmi les partenaires du réflexe normatif, en clair de la propension à sanctionner les partenaires indélicats, attitude clé d'une coopération efficace et durable selon les recherches antérieures. Ce modèle est fondé, aussi paradoxal que cela puisse sembler, sur l'hypothèse du libre choix de participer ou de ne pas participer à la coopération.

    L'article complet: ICI

  • Le caractère historique de l'adéquation des mathématiques à la physique


    En parcourant, à travers l'histoire des sciences, plusieurs cas marquants des rapports de la physique et des mathématiques, l'on s'aperçoit que la capacité du formalisme mathématique à exprimer d'une manière si ajustée et féconde les problèmes physiques n'est pas une donnée de nature universelle et intemporelle: elle résulte, à chaque époque, et pour chaque nouveau type de problème abordé, d'une construction, qui met en jeu le ‘système’ de la mathématique et de la physique de cette époque et la nature des concepts et des grandeurs physiques concernés. On examinera, dans cette perspective, quelques moments importants de l'histoire de la constitution, à l'aide de l'analyse, de la physique mathématique et théorique. On s'arrêtera, en particulier, à la construction de la causalité à l'aide des concepts du calcul différentiel, ainsi qu'à la rationalisation de la mécanique grâce à la mise en oeuvre de ce calcul, et à l'extension de la mécanique du point matériel aux milieux continus à la faveur de l'invention du calcul aux dérivées partielles.

    Un fichier PDF de Michel Paty destiné à des personnes ayant déjà de bonnes connaissances des sujets mathématiques.

  • De retour de vacances : Racine de 2, Grothendieck et Bourbaki

    7a66b0a3fbc6cc4b43796727d4e4ab81.jpgAprès quinze jours passés près de Saint-Tropez, plus exactement à Gassin, petit village adorable, perché à flanc de montagne  qui domine le golfe de Saint-Tropez, me voici de retour à la maison. Durant le trajet qui mène de la Croix-Valmer aux iles de Port-Cros et de Porquerolles, j'ai pu longuement méditer sur les yatchs de luxe et les villas surplombant la mer. Un propriétaire a même construit un funiculaire pour relier son habitation à la grande bleue... et je me suis dit que ni les bateaux, ni les villas, ni les funiculaires n'auraient intérêt à hériter d'un propriétaire comme moi !

    Alors je me suis replongé tranquillement dans mes lectures estivales, allongé sous le soleil et le mistral, badigeonné de crème  indice 40, ce qui m'a permis de passer totalement inaperçu parmi les touristes nouvellement arrivés !

    Au programme, j'ai lu l'excellent livre de Frédéric Patras : "La pensée mathématique contemporaine" qui dresse son état des lieux en sept chapitres :
    Le style en mathématiquesea4dd0cb3ecc4b64d583d9da979b5b06.jpg
    De Platon à Husserl
    Des origines des mathématiques modernes
    Axiomes et intuitions
    Le courant structuraliste
    Structures et catégories
    Les demeures de la pensée
    A la rencontre du réel

    Frédéric Patras analyse avec beaucoup de finesse et de profondeur les apports de Bourbaki, tant en termes positifs que négatifs ainsi que leur incidence sur la difficile succession après cette période clé de la vie des mathématiques françaises. Il nous présente aussi l'oeuvre méconnue de 1000 pages d'Alexandre Grothendieck,
    Récoltes et Semailles, dont les 100 premières pages ont aussi fait l'objet d'une lecture attentive.

    " Penser avec Grothendieck " quelques citations pdf : ICI

    3ce31fcf1643f72d90e57fa00687d5c2.jpgJ'ai presque terminé " Le fabuleux destin de racine de 2 " par Benoit Rittaud qui nous transporte de 1900 avant notre ère grâce à la tablette babylonienne YBC 7289 sur laquelle on trouve la présence de ce nombre avec la précision étonnante de 7 décimales jusquaux calculs par 11c0d93e40cf205968c21d569364f4d2.jpgordinateurs les plus récents, soit en tout plus de 400 pages de voyage dans l'espace et dans le temps autour de ce nombre qui n'a pas à palir devant les succès médiatiques de Pi et du nombre d'or.

    La vidéo de la conférence de Benoit Rittaud et de nombreuses ressources sont  disponibles sur le site:

    Le Fabuleux destin de √2 .