Ok

En poursuivant votre navigation sur ce site, vous acceptez l'utilisation de cookies. Ces derniers assurent le bon fonctionnement de nos services. En savoir plus.

Pythagore - Page 2

  • Une théorie géométrique de la musique

    Leibniz affirmait : La musique est un exercice d'arithmétique secrète, et celui qui s'y livre, ignore qu'il manie des nombres".

    Depuis que Dmitri Tymoczko, Clifton Callender  et  Ian Quinn ont mis au point (qui n'est pas un point d'orgue!) une théorie géométrique de la musique, il faudrait remplacer dans la citation précédente, arithmétique par géométrie et nombres par figures.
     
    Loin d'être en mesure de vous expliquer les diverses figures géométriques issues de quelques groupements de notes, je vous propose d'écouter un peu de Chopin et de Deep Purple et d'essayer de se laisser transporter (ce n'est pas très facile pour l'instant!) par les quelques figures décrites par ces morceaux sur le site de Dmitri Tymocsko: ICI ou directement avec les vidéos ci-après:
     
    La vidéo pour Chopin

    La vidéo pour Deep Purple
     
    L'article de Science Daily : ICI
    L'article de Princeton University : ICI
    L'article de Florida State University : ICI

    Tout ceci me laisse sans voix. Je ne maîtrise absolument pas l'univers musical, encore moins sa mathématisation et  ce problème, à peu près aussi vieux que les mathématiques elles-mêmes, offre encore de nouvelles découvertes aujourd'hui.

    Pythagore voyait dans les nombres la musique de l'univers. Elle se laissa quant à elle gentiment "mathématiser". Il fut celui qui relia le nombre à la musique. Certains grands noms lui emboîtèrent le pas, comme Kepler, ce que lui reprocha d'ailleurs Madame du Châtelet dans ses commentaires des Principia. Aujourd'hui un nouveau pas est franchi, qui serait celui de la découverte d'une vérité originelle, d'un retour aux sources. Les mathématiciens grecs eurent bien des difficultés à relier les nombres et la géométrie, c'était d'ailleurs cette dernière qui prédominait dans leurs esprits au détriment des premiers, plus difficles d'accès. La musique quant à elle était naturellement reliée au nombre et elle y est restée jusqu'à la musique contemporaine, celle de Xénakis par exemple. Il n'existait jusqu'à aujourd'hui qu'un unique couple possible,  musique et nombre,  même si les générations successives se sont permises qulelques libertés, jusqu'à y introduire le chaos et de hasard.

    Nous allons pouvoir à partir d'aujourd'hui, commencer à concevoir la musique de façon géométrique. Une révolution est en marche.


    Pour compléter:

    Musique et mathématiques au Moyen-Age: ICI

  • Les mathématiques du Palais de la découverte

    1a7284518b74d2d82db7992878494231.jpgLe Palais de la Découverte de Paris nous propose plusieurs points d'accès aux mathématiques.

    Le premier se fait au travers  des formes mathématiques
    ICI et en ce moment de la présentation de la courbe du jour et de plus de 150 courbes algébriques transcendantes ou ornementales. Il est possible d'imprimer une fiche en format PDF de chacune d'entre elles avec un brève explication : ICI

    On y trouvera aussi :

    Montre-moi des théorèmes
    Les origines des mathématiques se perdent dans la nuit des temps : architectes, commerçants, ou autres corporations, ont découvert très tôt, chacun dans ses domaines, des résultats mathématiques, des techniques, des recettes qu’ils se transmettaient oralement.
    6 animations du théorème de Pythagore :
    ICI


    Somme des angles d’un triangle sphérique
    Nous avons tous appris, dès le plus jeune âge, que la somme des angles d'un triangle ... vaut 180°. Oui mais les astronomes et les navigateurs savent depuis longtemps que leurs droites sont souvent tracées sur une sphère ; un triangle sur la sphère s'obtient par intersections deux à deux de trois grands cercles, qui jouent sur la sphère le rôle que jouent les droites sur le plan. Quelle est alors la somme des angles d'un triangle ?

    Planter des choux…

    Savez-vous planter les choux à la mode de chez nous ? Il faut les disposer de façon telle qu'un bricou qui en mangerait deux pourra toujours en manger un troisième aligné avec les deux premiers.

    Le deuxième point d'entrée est celui des Nombres ICI.

    On y trouvera :

    Autour du nombre pi
    La longue histoire du nombre π commence bien avant qu'Euler ne rende populaire cette notation, due à William Jones, en 1706, bien avant que π (rapport du périmètre au diamètre d'un cercle) ne soit considéré comme un nombre. La quête du nombre π et de ses décimales accompagne toute l'histoire des nombres et de la compréhension des nombres entiers, décimaux, rationnels, irrationnels, algébriques, transcendants. π n'a-t-il qu'un nombre fini de décimales ? En a-t-il une infinité ? 

    Les palindromes.
    Un palindrome est un mot qui se lit de la même façon de gauche à droite que de droite à gauche : RADAR, LAVAL Ce peut être aussi une phrase, mais alors on ne tient pas compte de ...

    Les suites logiques.
    Par quel nombre faut-il compléter - la suite logique" : 1, 2, 4, ... ? - la suite "logique" 1, 2, 4, 8, ... ? - la suite "logique" 1, 2, 4, 8, 16, ... ? Et si on veut tester tes capacités intellectuelles en te demandant le nombre qui vient après 1, 2, 3, 4, ne répond ...

    Les aires
    Peut-on comparer la taille de ces deux figures ? C'est bien compliqué. Commençons par plus simple, avec des rectangles. Comment les mesurer ? Une idée de départ possible est de démarrer sur un rectangle à côtés entiers. Pour évaluer sa "taille", pour le comparer à d'autres, on peut avoir recours à un quadrillage : on le couvre de ...


    Le troisième point d'entrée est celui des mathématiques de l'incertain :
    ICI

    Des images de mouvement brownien, par Jean-François Colonna.
    La revue "Découverte" du mois de décembre 2004 intègre un article de Jean-Pierre Kahane, mathématicien, membre de l'Académie des sciences, sur le mouvement brownien. Certaines illustrations ont été faites par Jean-François Colonna, du LACTAMME, CMAP/École polytechnique, FT R&D.


    On pourra découvrir la construction d'une pyramide par la méthode d'accrétion.

     
  • Qui a vraiment écrit le théorème de Pythagore ?

    Bien évidemment, ce n'est pas Pythagore. Ce serait trop simple. Tout comme Archimède et sa baignoire ou Newton et sa pomme, bien des légendes se sont construites au fil du temps. On ne sait même pas si Pythagore s'est un jour intéressé à ce théorème, connu bien avant lui comme le montrent des tablettes babyloniennes en argile, datant de 1800-1700 av. J.-C. On y trouve des séries de chiffres qui satisfont à ce théorème dit de Pythagore. Rappelons qu'il stipule que dans un triangle rectangle, le carré du plus grand côté (l'hypoténuse) est égal à la somme des carrés des deux autres côtés. La fameuse formule a² = b² + c².

    On ne sait pas grand-chose de la vie de Pythagore et il n'a laissé aucun écrit direct. Mais qu'il ait été à son époque un « grand » des mathématiques n'est pas contestable. L'époque à laquelle il vivait est d'ailleurs particulièrement riche en grands esprits. Pythagore est né vers 570 av. J.-C. sur l'île de Samos, comme Archimède deux siècles plus tard. Pythagore est contemporain de Confucius et Lao-Tseu, de Bouddha et de Zarathoustra. Mais il ne les connaissait sans doute pas. Après avoir apparemment beaucoup voyagé, il se fixe à Crotone en Calabre, dans le sud de l'Italie (il y mourra vers 480 av. J.-C.). Là, il fonde une espèce de fraternité mystique basée sur les mathématiques et les nombres qui, pensent-ils, sont à la base de l'harmonie universelle. « Tout est nombre » est leur principe et ils attribuent à toute chose un nombre. Ils établissent aussi une correspondance entre les nombres et les mécanismes de la nature. « Les nombres seuls permettent de saisir la nature véritable de l'univers », affirment-ils. Ils croient à la réincarnation, Pythagore lui-même s'estimant la réincarnation d'Euphorbe, un héros troyen. Ils ont des règles de vie strictes comme manger cru et végétarien, ne pas s'habiller de laine ou... ne surtout pas manger de haricots.
    Si Pythagore n'est pas l'auteur de « son » théorème, son école a apporté de nombreuses nouveautés en mathématiques. En premier lieu parce que les pythagoriciens avaient une vision du monde très en avance sur leur époque. Ils pensent ainsi, déjà, que la Terre est ronde et que les astres se déplacent sur des cercles concentriques qui obéissent à des lois mathématiques. Il invente ainsi le terme « cosmos » qui veut dire ordre. Ce sont aussi les premiers à développer les démonstrations (le théorème de Pythagore peut aujourd'hui se démontrer de plus de 350 façons différentes). Et ils ont beaucoup étudié les sons et les notes de musique, établissant les harmoniques, les accords et le rapport entre longueurs des cordes et sons.

    En revanche, ils refusent le zéro, qu'ils apparentent au « vide », de « non-existence » et que donc la nature refuse, et s'empêtrent dans les nombres dits « incommensurables » que l'on appelle aujourd'hui irrationnels. C'est-à-dire que ce ne sont ni des entiers, ni des fractionnaires. Les pythagoriciens ont découvert qu'il est impossible de trouver deux nombres entiers tels que le carré de l'un soit le double du carré de l'autre. Cette question des nombres irrationnels aurait été découverte en constatant que la diagonale d'un carré ne contient pas un nombre entier de fois la longueur du côté du carré : on ne peut pas dire que la diagonale est une fois et demie, ou deux fois, ou deux fois et demie plus longue que le côté. Cela a beaucoup déstabilisé les disciples de Pythagore car cela allait contre leur principe que dans la nature, un nombre est associé à chaque chose. Ils ont quand même beaucoup développé l'arithmétique, ont fondé les bases de la théorie des proportions et étudié les nombres pairs et impairs.
    Mais comme de nombreux autres domaines scientifiques, il n'y a pas eu de progression linéaire et constante. Il y a parfois des avancées, parfois des reculs. Au XVIIIe siècle av. J.-C., les Mésopotamiens savaient résoudre des équations du second degré, ainsi que quelques équations du troisième et même du quatrième degré. Deux siècles plus tard, ce savoir se sera apparemment perdu et les Égyptiens ne sauront plus résoudre que des équations du premier degré.
    L'histoire du zéro est aussi zigzagante. Si les pythagoriciens refusaient le zéro, longtemps avant eux, les Babyloniens l'utilisaient. Mais dans des formes balbutiantes. Toutes les civilisations, indiennes, mayas et autres, ont, à un moment ou à un autre, flirté avec le zéro. Et le plus difficile pour nous aujourd'hui est d'arriver à comprendre comment on pouvait faire des calculs sans le zéro tel que nous le connaissons, à la fois quantité nulle et chiffre des dizaines, centaines, milliers, etc.

    L'article original : ICI

    Toutes les chroniques de Jean-Luc Nothias sur www.lefigaro.fr/sciences