Ok

En poursuivant votre navigation sur ce site, vous acceptez l'utilisation de cookies. Ces derniers assurent le bon fonctionnement de nos services. En savoir plus.

La Recherche - Page 3

  • L’ingénierie génétique qui suit les lois de l’électricité

    Le Laboratoire des Systèmes Complexes de l’Université Pompeu Fabra (Barcelone) a développé et validé expérimentalement un modèle mathématique prédisant la charge supplémentaire de travail provoquée par l’expression génétique d’un gène lors de son introduction au sein d’un organisme. De façon surprenante, la formule mathématique obtenue est équivalente à la loi d’Ohm, qui détermine la tension d’un circuit électrique.

    Peut-on prédire le comportement d’un organisme vivant par l’état de ses gènes et de ses protéines de la même manière qui nous prédisons celui d’une machine par ses composants ? Cette interrogation est considérée comme fondamentale pour de nombreux experts de la biologie synthétique, discipline consistant à utiliser les techniques d’ingénierie pour concevoir de nouveaux organismes génétiquement modifiés. Les scientifiques du Laboratoire des Systèmes Complexes du Département des Sciences Expérimentales et de la Santé de Barcelone (DCEXS) ont développé un modèle mathématique prédisant l’expression génétique d’un organisme, se rapprochant de manière surprenante des lois régissant les circuits électriques, et loin de suivre une logique qui s’appuierait sur les particularités de la biologie.

     

    ohm_cle8114a1.jpg

    L’équipe du Laboratoire des Systèmes Complexes du Département des Sciences Expérimentales et de la Santé de Barcelone (DCEXS) / Université Pompeu Fabra

    L’ingénierie génétique, une réalité

    La biologie synthétique vise à améliorer les fonctions des organismes en leur attribuant des capacités à l’origine inexistantes. Elle est utilisée notamment dans le cadre de projets comme la lutte contre le paludisme ou la génération de nouvelles sources d’énergie d’origine biologique. Ces changements dans l’organisme sont rendus possibles grâce à l’ingénierie génétique, qui permet l’ajout de gènes provenant d’autres espèces au sein d’un organisme. La biologie synthétique, elle, cherche à introduire non seulement de nouveaux gènes mais également les instructions nécessaires qui déterminent si le corps doit ou ne doit pas remplir une fonction en particulier.
    Cependant, l’introduction d’un gène dans l’ADN d’une cellule génère un stress cellulaire, provoquant une charge supplémentaire pour l’expression génétique de la cellule et affectant son métabolisme. Cette charge rend impossible la prédiction du comportement d’un circuit génétique entier via une simple caractérisation individuelle des gènes le composant, et représente une des principales limitations de la biologie synthétique.
    L’expression génétique d’une cellule dépend des ressources dont elle dispose, de sorte que si la demande d’expression génétique augmente (ce qui est le cas lors de l’ajout d’un nouveau gène) et les ressources cellulaires restent constantes, le résultat final de l’expression sera altéré. De la même manière que la lumière d’une ampoule peut varier lors de la connexion d’un appareil électrique d’une certaine puissance (un radiateur par exemple), l’ajout d’un gène peut affecter l’expression d’un autre au sein d’un organisme vivant.

    Lire la suite

  • Ma thèse en 180 s de Perrine Berment : Modélisation mathématique de tumeurs cérébrales

    Perrine Berment est doctorante en mathématiques à l’université de Bordeaux. Parmi les 5 lauréats de la finale de l'université de Bordeaux, elle participe à la finale régionale de MT180s le mardi 26 avril.
    Son laboratoire : Institut de mathématiques de Bordeaux (unité CNRS et université de Bordeaux)
    Son sujet de thèse : Modélisation mathématique de tumeurs cérébrales de bas grade et assimilation de données cliniques d'imagerie.

     

  • Une machine expérimentale perce les secrets des bulles de savon

    (a) Evolution typique de la cavité créée dans un film lorsque la vitesse du gaz Vg croit et est inférieure à la valeur minimale de création de bulles Vc. (b) Des bulles se forment lorsque Vg est plus grande que Vc.
    © L. Salkin et al., Phys. Rev. Lett. (2016). Institut de physique de Rennes (CNRS/Université Rennes 1)

    Il arrive parfois que des phénomènes qui sembleraient, a priori, bien connus gardent une forte part de mystère. La manière dont se forment les bulles de savon n'avait ainsi jamais fait l'objet d'études scientifiques poussées, malgré les nombreuses applications qui nécessitent une production, ou au contraire une absence, de bulles. Une équipe de chercheurs du département Matière molle de l'Institut de physique de Rennes (CNRS/Université Rennes 1) s'est penchée sur la question et a développé en laboratoire une machine à bulles auto-entretenue. Les chercheurs sont ainsi parvenus à déterminer la vitesse minimale à laquelle il convient de souffler sur un film de savon pour former des bulles, dans différentes conditions expérimentales. Ces travaux, qui permettraient d'optimiser divers procédés industriels, sont publiés le 19 février 2016 dans la revue Physical Review Letters.

    Lire la suite

  • Les ondes gravitationnelles détectées 100 ans après la prédiction d'Einstein

    Simulation de l'évolution des deux trous noirs, juste avant leur fusion, et des ondes gravitationnelles qu'ils produisent.
    © Max Planck Institute for Gravitational Physics

     

    LIGO ouvre une nouvelle fenêtre sur l'Univers avec l'observation d'ondes gravitationnelles provenant d'une collision de deux trous noirs. Pour la première fois, des scientifiques ont observé des ondulations de l'espace-temps, appelées ondes gravitationnelles, produites par un événement cataclysmique dans l'Univers lointain atteignant la Terre après un long voyage.

    Cette découverte confirme une prédiction majeure de la théorie de la relativité générale énoncée par Albert Einstein en 1915 et ouvre une toute nouvelle fenêtre sur le cosmos. Les ondes gravitationnelles portent en elles des informations qui ne peuvent pas être obtenues autrement, concernant à la fois leurs origines extraordinaires (des phénomènes violents dans l'Univers) et la nature de la gravitation. La conclusion des physiciens est que les ondes gravitationnelles détectées ont été produites pendant la dernière fraction de seconde précédant la fusion de deux trous noirs en un trou noir unique, plus massif et en rotation sur lui-même. La possibilité d'une telle collision de deux trous noirs avait été prédite, mais ce phénomène n'avait jamais été observé.

    Ces ondes gravitationnelles ont été détectées le 14 septembre 2015, à 11h51, heure de Paris (9h51 GMT), par les deux détecteurs jumeaux de LIGO (Laser Interferometer Gravitational-wave Observatory) situés aux Etats-Unis – à Livingston, en Louisiane, et Hanford, dans l'Etat de Washington. Les observatoires LIGO sont financés par la National Science Foundation (NSF) ; ils ont été conçus et construits par Caltech et le MIT, qui assurent leur fonctionnement. La découverte, qui fait l'objet d'une publication acceptée par la revue Physical Review Letters, a été réalisée par la collaboration scientifique LIGO (qui inclut la collaboration GEO et l'Australian Consortium for Interferometric Gravitational Astronomy) et la collaboration Virgo, à partir de données provenant des deux détecteurs LIGO. Une centaine de scientifiques travaillant dans six laboratoires associés au CNRS ont contribué à cette découverte, au sein de la collaboration Virgo.

    Lire la suite

  • La Société Française de Recherche Opérationnelle et d’Aide à la Décision décerne le prix des « Pros de la RO 2015 »

    La Société Française de Recherche Opérationnelle et d’Aide à la Décision (ROADEF) a décerné vendredi 27 novembre 2015 au CNAM à Paris le prix des « Pros de la RO 2015 » devant près de 200 industriels et chercheurs. La société AMADEUS reçoit le premier prix pour son projet d’optimisation des opérations au sol des aéroports. Les sociétés DECISION BRAIN, EURODECISION, GEFCO et ORANGE comptaient parmi les finalistes. C’est à la veille de l’ouverture de la COP21 que la Société Française de Recherche Opérationnelle et Aide à la Décision (ROADEF –http://www.roadef.org) a récompensé les meilleurs projets industriels accomplis dans ce domaine ces deux dernières années. Discipline scientifique à la croisée des mathématiques, de l’informatique, de l’économie et des sciences de gestion, la recherche opérationnelle vise à une approche rationnelle de la prise de décision. Elle a généralement pour objectif la minimisation des ressources engagées pour assurer un certain niveau de qualité de services. Ainsi, son impact est autant socio-économique qu’écologique dans des secteurs d’activité variés comme le transport, la logistique, l’énergie, ou les télécommunications. Une des caractéristiques des projets récompensés lors de cette soirée est l’utilisation de techniques mathématiques et algorithmiques de pointe, mais « cachées » au sein de logiciels ergonomiques, utilisables par des non-initiés. Par exemple, l’entreprise AMADEUS, lauréate du premier prix, a développé un logiciel permettant de minimiser la distance parcourue par les avions au sein des aéroports (et donc leurs émissions de CO2), tout en minimisant les délais d’attente pour les passagers. Ce logiciel est utilisé par l’aéroport de Munich en Allemagne. A propos de la ROADEF. La Société Française de Recherche Opérationnelle et d'Aide à la Décision (ROADEF) est une association dont la vocation est de promouvoir la recherche opérationnelle en France, d'en diffuser la connaissance auprès des entreprises, des administrations et du grand public, de favoriser son enseignement en formation initiale et continue. La ROADEF est une société savante répertoriée par le ministère de l’enseignement supérieur et de la recherche.

    Son prochain congrès se tiendra à Compiègne du 10 au 12 février 2016 ; il rassemblera 500 enseignants, chercheurs et ingénieurs. www.roadef.org - www.facebook.com/roadef - www.twitter.com/roadef