Ok

En poursuivant votre navigation sur ce site, vous acceptez l'utilisation de cookies. Ces derniers assurent le bon fonctionnement de nos services. En savoir plus.

Inclassables M@thématiqu€s - Page 49

  • L'algorithme de Doraki pour multiplier deux nombres de façon originale

    Anthony Canu nous présente en vidéo l'algorithme très original de Doraki pour multiplier deux nombres. J'ai réussi à le faire tourner... donc vous n'aurez aucun problème à le faire.

    J'ai commencé par 23x52 qui est très simple et j'ai ensuite testé avec 32x52. Le 32 se transforme en 4-8. 

     

     

    Cette vidéo vous présente une méthode particulière permettant de multiplier des grands nombres sans utiliser les tables de multiplication. Cette vidéo est un prolongement de la vidéo précédente 
    Elle permet de multiplier des entiers plus gros grâce à l'algorithme de Doraki.

    Cet algorithme est une réponse simple à un problème mathématique compliqué :
    Réécrire un entier N comme une somme de termes de la forme ϵ×k×10^j où ϵ∈{−1,1}, k∈{1,2,4,8} et j∈N et pour laquelle le nombre de tels termes est minimal.
    Cet algorithme a été créé le 10.03.16 par Doraki à l'issue d'une discussion sur le forum Maths Forum :
    http://www.maths-forum.com/superieur/...

    L' algorithme peut se présenter ainsi :
    ***************************************
    Prendre un par un les chiffres de la multiplicande de la droite vers la gauche en commençant par le chiffre situé le plus à droite :

    Si le chiffre est un 0,un 1 ou un 4, il reste inchangé et vous passez au chiffre suivant.

    Si le chiffre est un 2, vous regardez la parité du chiffre suivant : s'il est pair alors le chiffre 2 reste inchangé, si le chiffre suivant est impair alors le chiffre 2 devient (-8) et on ajoutera alors une retenue de 1 au chiffre suivant.

    Si le chiffre est un 3, vous regardez la parité du chiffre suivant : s'il est pair alors le chiffre 3 reste inchangé, si le chiffre suivant est impair alors le chiffre 3 devient (-7) et on ajoutera alors une retenue de 1 au chiffre suivant.

    Si le chiffre est un 5, vous regardez la parité du chiffre suivant : s'il est pair alors le chiffre 5 reste inchangé, si le chiffre suivant est impair alors le chiffre 5 devient (-5) et on ajoutera alors une retenue de 1 au chiffre suivant.

    Si le chiffre est un 6 alors il deviendra (-4) et on ajoutera alors une retenue de 1 au chiffre suivant.

    Si le chiffre est un 7, vous regardez la parité du chiffre suivant : s'il est pair alors le chiffre 7 reste inchangé, si le chiffre suivant est impair alors le chiffre 7 devient (-3) et on ajoutera alors une retenue de 1 au chiffre suivant.

    Si le chiffre est un 8, vous regardez la parité du chiffre suivant : s'il est pair alors le chiffre 8 reste inchangé, si le chiffre suivant est impair alors le chiffre 8 devient (-2) et on ajoutera alors une retenue de 1 au chiffre suivant.

    Si le chiffre est un 9 alors il deviendra (-1) et on ajoutera alors une retenue de 1 au chiffre suivant.

    En résumé :
    ************
    0,1 ou 4 restent inchangés

    6 devient (-4) et 9 devient (-1) toujours

    2 devient (-8) et 8 devient (-2) et 3 devient (-7) et 7 devient (-3) et 5 devient (-5) si le chiffre suivant est impair sinon restent inchangés

    Quand on transforme un chiffre en négatif, on oublie pas d'ajouter une retenue de 1 au chiffre suivant !

     

    Lire la suite

  • Ma thèse en 180 s de Perrine Berment : Modélisation mathématique de tumeurs cérébrales

    Perrine Berment est doctorante en mathématiques à l’université de Bordeaux. Parmi les 5 lauréats de la finale de l'université de Bordeaux, elle participe à la finale régionale de MT180s le mardi 26 avril.
    Son laboratoire : Institut de mathématiques de Bordeaux (unité CNRS et université de Bordeaux)
    Son sujet de thèse : Modélisation mathématique de tumeurs cérébrales de bas grade et assimilation de données cliniques d'imagerie.

     

  • Une machine expérimentale perce les secrets des bulles de savon

    (a) Evolution typique de la cavité créée dans un film lorsque la vitesse du gaz Vg croit et est inférieure à la valeur minimale de création de bulles Vc. (b) Des bulles se forment lorsque Vg est plus grande que Vc.
    © L. Salkin et al., Phys. Rev. Lett. (2016). Institut de physique de Rennes (CNRS/Université Rennes 1)

    Il arrive parfois que des phénomènes qui sembleraient, a priori, bien connus gardent une forte part de mystère. La manière dont se forment les bulles de savon n'avait ainsi jamais fait l'objet d'études scientifiques poussées, malgré les nombreuses applications qui nécessitent une production, ou au contraire une absence, de bulles. Une équipe de chercheurs du département Matière molle de l'Institut de physique de Rennes (CNRS/Université Rennes 1) s'est penchée sur la question et a développé en laboratoire une machine à bulles auto-entretenue. Les chercheurs sont ainsi parvenus à déterminer la vitesse minimale à laquelle il convient de souffler sur un film de savon pour former des bulles, dans différentes conditions expérimentales. Ces travaux, qui permettraient d'optimiser divers procédés industriels, sont publiés le 19 février 2016 dans la revue Physical Review Letters.

    Lire la suite