Ok

En poursuivant votre navigation sur ce site, vous acceptez l'utilisation de cookies. Ces derniers assurent le bon fonctionnement de nos services. En savoir plus.

paradoxe - Page 6

  • Paradoxe

    L'ontologie est le paradoxe dans la parole naissante.
    Le refuser comme l'accepter c'est faire acte de croyance.
    Les discours de la science et de la religion sont emprunts de cette ontologie.
    Il en découle droits et interdits d'actes et de paroles .
    La question à se poser est quelle est la voie d'étude approchant au mieux le paradoxe et est-il nécessaire d'en faire l'étude?

  • Egalité mathématique

    Dire que x=y contient une contradiction, car il faut d'une part considérer x et y comme deux choses égales et d'autre part être capable de les penser comme différentes pour substituer l'une à l'autre.

  • Paradoxe sorite

    J'aimerai savoir à quel moment "un petit lot" se transforme "en gros tas" !

  • Le paradoxe de Bertrand

    Paradoxe de la corde prise au hasard ( Bertrand )

    Problème : On trace une corde au hasard dans un cercle. Quelle est la probabilité pour que sa longueur soit supérieure au côté du triangle équilatéral inscrit ?

    Bertrand donne 3 solutions différentes à ce problème.

    En vert les cordes possibles

    En rouge les cordes impossibles

    Première solution :

    medium_20-06-2006_14-26-37_0044_copie.jpg

    On peut pour des raisons de symétrie se donner la direction de la corde ; le point d'intersection de cette corde avec le diamètre ( vertical sur la figure ) perpendiculaire à cette direction  devra alors se trouver sur un segment  égal  à la moitié de la longueur de ce diamètre ( car la distance au centre du côté du triangle équilatéral inscrit est égale à la moitié du rayon ) ; la probabilité est donc de 1/2.

     




    Deuxième solution :

    medium_20-06-2006_14-26-54_0045_copie.jpg

    On peut, pour des raisons de symétrie, se donner une des extrémités de la corde sur le cercle ; la tangente en ce point et les 2 cotés du triangle équilatéral inscrit ayant ce point pour sommet forment trois angles de 60° ; la direction de la corde doit être à l'intérieur de l'angle formé par le triangle ( en vert) ; la probabilité est donc de 1/3.

     





    Troisième solution :

    medium_20-06-2006_14-27-08_0046.jpg

    Pour fixer la position de la corde, il suffit de donner son milieu ; pour que la corde satisfasse à la condition de l'énoncé, il faut que son milieu soit intérieur à un cercle concentrique au cercle donné et de rayon moitié. La surface de ce cercle ( vert ) est le quart de la surface donnée ; la probabilité est donc de 1/4.

     

    Doit-on penser que ces trois solutions sont également bonnes et, par suite, également mauvaises ? se demande Emile Borel dans son livre Le hasard parut en 1914. Nullement, poursuit-il, il s'agit simplement de préciser le mode d'après lequel se fera la vérification expérimentale, c'est à dire comment on s'y prendra pour tracer une corde au hasard : si on assujetit cette corde à passer par un point fixe du cercle ou si l'on fixe son milieu au hasard, il faudra choisir la deuxième ou la troisième solution, mais il est aisé de voir que la plupart des procédés naturels que l'on peut imaginer conduisent à la première.


    Un site traite de ce "paradoxe" et permet la simulation des expériences :
    ICI

    Un fichier pdf de Culturemath : ICI