Ok

En poursuivant votre navigation sur ce site, vous acceptez l'utilisation de cookies. Ces derniers assurent le bon fonctionnement de nos services. En savoir plus.

Humour - Page 20

  • 3.14159265358979323846264338327950288419716939937510.com

    Et voilà ce qu'on trouve à cette adresse ! Cliquez sur l'image pour accéder au site, mais vous n'y trouverez rien de plus... C'est tout simplement irrationnel, n'est-ce pas ?

    pi.jpg
  • The Klein 4 Group présente A finite simple group (of order two).

    S'il y a un matheux bilingue qui peut traduire l'intégralité du texte du Klein 4 Group...

     

    The path of love is never smooth
    But mine's continuous for you
    You're the upper bound in the chains of my heart
    You're my Axiom of Choice, you know it's true

    But lately our relation's not so well-defined
    And I just can't function without you
    I'll prove my proposition and I'm sure you'll find
    We're a finite simple group of order two

    I'm losing my identity
    I'm getting tensor every day
    And without loss of generality
    I will assume that you feel the same way

    Since every time I see you, you just quotient out
    The faithful image that I map into
    But when we're one-to-one you'll see what I'm about
    'Cause we're a finite simple group of order two

    Our equivalence was stable,
    A principal love bundle sitting deep inside
    But then you drove a wedge between our two-forms
    Now everything is so complexified

    When we first met, we simply connected
    My heart was open but too dense
    Our system was already directed
    To have a finite limit, in some sense

    I'm living in the kernel of a rank-one map
    From my domain, its image looks so blue,
    'Cause all I see are zeroes, it's a cruel trap
    But we're a finite simple group of order two

    I'm not the smoothest operator in my class,
    But we're a mirror pair, me and you,
    So let's apply forgetful functors to the past
    And be a finite simple group, a finite simple group,
    Let's be a finite simple group of order two
    (Oughter: "Why not three?")

    I've proved my proposition now, as you can see,
    So let's both be associative and free
    And by corollary, this shows you and I to be
    Purely inseparable. Q. E. D.

     

  • De la suite dans les idées éducatives

    Anciens trimestres
    Ministre
    Niveau
    Conseils de classes
    Semestres
    Réforme
    Thèmes
    Heures de soutien obligatoire



    Exercice d'entrainement à la future réforme du lycée:

    Affecter à chaque ligne le nombre de 1 à 4 qui lui correspond et réorganiser les termes de façon a faire apparaître une suite croissante.

  • Irrécupérable !