3.14159265358979323846264338327950288419716939937510.com
Et voilà ce qu'on trouve à cette adresse ! Cliquez sur l'image pour accéder au site, mais vous n'y trouverez rien de plus... C'est tout simplement irrationnel, n'est-ce pas ?
En poursuivant votre navigation sur ce site, vous acceptez l'utilisation de cookies. Ces derniers assurent le bon fonctionnement de nos services. En savoir plus.
Et voilà ce qu'on trouve à cette adresse ! Cliquez sur l'image pour accéder au site, mais vous n'y trouverez rien de plus... C'est tout simplement irrationnel, n'est-ce pas ?
S'il y a un matheux bilingue qui peut traduire l'intégralité du texte du Klein 4 Group...
The path of love is never smooth
But mine's continuous for you
You're the upper bound in the chains of my heart
You're my Axiom of Choice, you know it's true
But lately our relation's not so well-defined
And I just can't function without you
I'll prove my proposition and I'm sure you'll find
We're a finite simple group of order two
I'm losing my identity
I'm getting tensor every day
And without loss of generality
I will assume that you feel the same way
Since every time I see you, you just quotient out
The faithful image that I map into
But when we're one-to-one you'll see what I'm about
'Cause we're a finite simple group of order two
Our equivalence was stable,
A principal love bundle sitting deep inside
But then you drove a wedge between our two-forms
Now everything is so complexified
When we first met, we simply connected
My heart was open but too dense
Our system was already directed
To have a finite limit, in some sense
I'm living in the kernel of a rank-one map
From my domain, its image looks so blue,
'Cause all I see are zeroes, it's a cruel trap
But we're a finite simple group of order two
I'm not the smoothest operator in my class,
But we're a mirror pair, me and you,
So let's apply forgetful functors to the past
And be a finite simple group, a finite simple group,
Let's be a finite simple group of order two
(Oughter: "Why not three?")
I've proved my proposition now, as you can see,
So let's both be associative and free
And by corollary, this shows you and I to be
Purely inseparable. Q. E. D.