Ok

En poursuivant votre navigation sur ce site, vous acceptez l'utilisation de cookies. Ces derniers assurent le bon fonctionnement de nos services. En savoir plus.

Faire entrer la terre dans une balle de ping-pong: une transformation "lisse et fractale"

unnamed.jpg

Un globe terrestre isométrique

vignette_reverseColor_globalView2.png

vignette_072_04.png

vignette_rover6_fond3.png

Capture.JPG

Crédits des images et vidéos : E. Bartzos, V. Borrelli, R. Denis, F. Lazarus, D. Rohmer, B. Thibert

 

Dans les années 1950, Nicolas Kuiper et le prix Nobel John Nash ont démontré l’existence d’une vaste classe d’objets mathématiques paradoxaux tels que des tores plats en 3D ou des sphères réduites, sans pouvoir toutefois les visualiser. Une équipe de mathématiciens et d’informaticiens du CNRS, de l’Université Grenoble Alpes et de l’Université Claude Bernard Lyon 11, a réussi à construire et représenter visuellement une sphère réduite, cinq ans après avoir obtenu la première image d’un tore plat en 3D2. Les sphères, connues pour être rigides, ne peuvent pas être déformées isométriquement3, c'est à dire en préservant les longueurs des courbes, avec une régularité de classe C2. En se basant sur la théorie mathématique de l’intégration convexe4, les chercheurs sont parvenus à placer une sphère à l'intérieur d'une boule de rayon arbitrairement petit. Si l'on assimile la surface de la Terre à une sphère ronde, cette théorie permet de réduire son diamètre à celui d'un modèle réduit de globe terrestre ou d'une balle ping-pong tout en préservant les distances géodésiques5. La surface obtenue, très déformée, se compose de deux calottes sphériques, parfaitement lisses, connectées par une bande équatoriale fortement déformée. Les chercheurs montrent que ce changement de structure géométrique est similaire à celui observé lorsqu'on relie une courbe de von Koch à un segment de droite (voir figure 3). Ces résultats ouvrent des perspectives inédites en mathématiques appliquées, notamment pour la résolution de certaines équations aux dérivées partielles. Les étonnantes propriétés des fractales lisses pourraient également jouer un rôle central dans l'analyse de la géométrie des formes. Leurs résultats ont été publiés dans la revue Foundations of Computational Mathematics, le 6 juillet 2017.

  1. Institut Camille Jordan (CNRS/Universités Claude Bernard Lyon 1 et Jean Monnet/Ecole centrale de Lyon/INSA de Lyon), du GIPSA-lab (CNRS/Grenoble-INP/ Université Grenoble Alpes) et du laboratoire Jean Kuntzmann (CNRS/Université Grenoble Alpes/Grenoble-INP).
  2. http://www2.cnrs.fr/presse/communique/2583.htm
  3. Le résultat de John Nash et Nicolas Kuiper montre que ce n'est plus le cas si l'on autorise des déformations moins régulières, de classe C¹.
  4. Utilisée dans la détermination de solutions atypiques d’équations aux dérivées partielles.
  5. Sur le cercle, la distance géodésique est la longueur du plus petit arc de cercle joignant les deux points.

Le dossier complet 

La sphère réduite en image

 

unnamed.png

Une surface de Von Koch

Écrire un commentaire

Optionnel